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A B S T R A C T

T h i s  p a p e r  i s  ~levoted  to the collcq~t  of inst;il>i]ity  in dyllall]ical  systel~ls  with the

main em])lm.sis on  Orl]ital, Hadalnard’s  and Reynolds’ instabilities. It demonstrates that

the reqlliren]el]t  about  differentiability in dynamics in some  cases  is Ilot consistent with

the physical nature of motions, and may lead to Illlrealistic sollltions.  Special atteqltion  is

I)aid  to the fact that instal)ility  is Ilot an invariant  of motion: it depends u]~on fra:nes  of

reference, metric of configuration space, and classes of functions selected for Illatllelllatical

models of physical phenoxnena. This leads to the possibility of elimination of certain

types  o f  instal)ilities  (and in l]articlllar, t h o s e  w h i c h  lead to chacx  and tllrbulence)  by

el}larging  the class of functions using the Reynol(ls-type  transformation in rol~l])illatioll

with the stabilization l~ri]lciI)le:  the additional terms (tile so called Reylmlds  stresses I are

founci  from the conditions that they suppress the origil~al  instability. Based llpoll  these

ideas,  new approach to chaos and turbulence, a.s well as new n]athematical  forxllalislxl  for

nonlinear dynamics, are discussed.
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I. I N T R O D U C T I O N

In recent  years  all illcmasillg amollnt  of interest ha-s  Imll addrtwst=d  to tl]t’ fact that. in

many different domains of science  (])llysics,  chemistry, l~ioloqy. ellgilleering)$  systems with

a silllil;ir  strange lwha~’ior  {ire freq~lently  t’llcolllltt>!e(l. Ti~ese systelns  {iisl)lay  irreg~llar

al]d  llxll)recli(’t:il~l(’  tilne evolut ion,  tin<l are callt’fi  cl]aotic. Btlt  cl]aotic I]lotiolls  are not  t]~e

ol]ly lllotious  in dynan~ics  wilicll  are Ilnl)redictal)lt’. Jfll(’11  t’arlier.  alx)llt  a llllllclre[l  yeal>

ago, O. Reynolds studied, ex]xvimcwt:illy  and tllcoretic[illy, t(lrl~lllent  Ill(jtio:ls  ill fllli{ls.

Des])ite tl:e  ll]ally  efforts, the ]Jrol)lt~l]]  of l)re~lictioll  of tllr])l~k~]lt  n]otioms is still  ~~llsolve[i.

Later  another type of instability which is associated with a fi~il~~re of l]ylml)olicity  in

~listribl~ted  systellls  was  [liscovere~l l)y .J. Hadanlard.  Ill all tl]ese  cases  tile  postinstai]ility

lmhavior  o f  tile  solutions  t o  tile  original  Illoflt’ls  i s  rharacterizwl  l~y sll~wrsfmsitivity  t o

initial conditions, and for that reason, it cannot  be ]Jrcdicted  since the initial Conditions

are never  known exactly. In this paper we will discuss  a pmsihility  to dm’elop  a unified

approach to ]Jredictioll  of postinstahility  lwhavior  iu dynamics.

1.

T h e

ra te

Mathematical Formulations and Dynamical Invariant

Dynamics {lescrilxw the n~otion  of systems, i.e. the tilne tw’ollltiol~  of its I)arallwtrrs.

time variable t can he discrete or continuous. In discrete-time dynalllical  systell~s.  the

of change of their parameters x is defined oxLly  for discrete val~les of t. These systell~s

can be presented as the iteration of a function:

Xt+l =  V(xf, t), t == 0,1,2,  ,.. e t c . (1)

i.e. as difference equations.

In continuous-time dynamical systems the rate of change  of x is defined  for all vallles

of t; such systems can be moclelled  by ordinary ciifferent  ial equations.

dx
– x = V(x, t)

x–
(~)

or by partial [differential equations:

ox a2 x
x= V(x, x’, x’’, . ..t). x’ = ~, x“ = —

&2 ““’ (3)

if the rate of change, in addition, depends [il>on (Iistrihlltions  of x over space coordinates

s. h Eqs, (l), (2) and (3), x repre,wnts the state of tl]e dynamica l  sys tem.



Col]till~~olls-tillle  dynamical  system theory has adoptd basic  mathematical  am~~l~lp

tiol~s  of t]leory of f]ifferelltial  equa t ions  sllcll as different ial)ility  of tile  parmlleters ( JVitll

respcc-t to time ancl sl)ace) “:i. s lll:il]y tinles as Ilerf’ssar  y,” tllc l)oul~dedness  of the Velority

gra(limt,s  ihi/dx  ( the Lipschitz  coll{litiol]s)  t~tc. Ull(lt’r  tllest’  asslll~ll)tiolls,  tl]e t’xistellce.

[I]liquenms  and htal)ility  of sol[ltiol)s  [Iescril)illg  tile behavior of {Iyllallliral  syst(’l]ls Ilas I)t’el:

st~ldied,  However, the clynamical systems cannot be identified witl~ the mathematical mod-

els, i.e. , with the [lifferelltia]  eqllatiolls. Ill(leecl, dynaluical  systelms  arc cllaracterize~i  I)y

scalars, vectors, or tensors w}]icl] arc il]variant  with respect to coorrlil)ate  trallsfonll  atiolls.

}lmc~,  Eqs. (2) o r  ( 3 )  l~~oclel a clyl~all~ical  systel~~  ol~ly if  tl~ey l>reserve  these  illvarizillts

after any (smooth ) coorflillate  t ramsformation. For instance, any mo(lel  “of a l]~ccl~al~ical

system must be clerival)le  frolll  ~wriational  I)rinciples  which are expressed via the n]erhan-

ical invariant  (kinet ic  and potent ial  el:ergy,  dissil)ation  functiom, etc.), In otl]er wor(ls,

t h e  {lifferellce  l]etweell  clynamical systcll]s  and the correslmnrlil]g  (lifferelltial  equaticms  is

silnilar  to the differmlce  between a lllatrix  as all object of algel~ra,  and a second rank tex~sor

as an object of geometry: The same tensor can be modelled  by {lifferel~t  n]atrices tlepend-

ing  on choices of coordinates: however, all these  matrices must have the same eigenvalues.

C’ontinlung  this analogy, it ran be expected that the parameters x in Eqs. (2), or (3) ran

b e  (Iecoxnpose(l  (at lea-st,  in l~rincil~le)  il]to “ i n v a r i a n t ”  and “llox]-illvariant”  col]l]x)l]cllts,

in the same way in which a matrix .4 can h decomposed into illvarial:t  ( (liagollal  .~ ) and

coordinate-dependent (t?, (?)l components:

.4 = ekrl (4)

2 . Ignorable Coordinates and Orbital Instability

In mechanical systems, “non-invariant” compoiwnts  of x can be associated with ig-
.

norable  (or cyclic) coorclin.ates  which do not enter the Lagrangian  function explicitly, and

therefore, do not affect  the energy of the system. For non-conservative systems, in addition

to that, the generalized forces corresl~ondil~g  to these mordinat  es are zero. In terms of

Lagrange equations, this property is expressed as the conservation of generalized ignoral)h=

impultses  P (Gantmacher,  F., 1970):

ilL—=
.-l 0, Qa =’ o,~.e. ~ =  Pm =  Co?lst, c1 == 1,2,...  ?n
Uqfi

unlike the equations

l~ositioll impulses  P:

(5)
uqfi

for the position coordinates which, in general, do not preserve the

d (9L (9L. — .  ——
(it aq~ dq~

=  ~k, k =  1,2, .,.rt
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Here L is the Lagrangian,  q. and qk are ignorable  and posi t ion coorclinates,  rc~s]wctive]y,

Q~ are non-potent ial  compolleuts  of gmler[ilizd  forms.

(7)

I t  has ]wrio~lic attra(’tors:

Tk
?’ == —, k =  0,1,.,. f?tc,, /) =  (?O +d~ (s)

Returning to Eq. (7), ol~e ca)~ easily identify r and O as position an[l  ignoral)le  coordinates,

respectively, Indeed, the Lagrangiam and generalized forces  for this dynamical system are:

L == ;(+2 + 62), Q, = i COS7”,  Qe = O (9)

a.Ild therefore.
I d~L,. ,. di3L _ _ ,.n,——

fit aq, =Qr #u, ——
(it @

= (J@ =(-l (lU)

It is important to emphasize that the position coordinate r is stable  at the attractors,

while the ignorahle  coordinate @ is at the boundary of stability: any small error in @ will

ixlcrewe linearly (but  not exponentially) in time.

Indifference of energy of a clynamical system to an unlimited growth of ignorahle  co-

ordinates raises the following quest ion: do there exist such states where all the position

coordinates are stable,  but some of ignorahle  coordinates are unstable? Yul]lerical ex-

periments give positive answers to this question. These states are associated with cl~aotic

behavior. Unlike periodic attractors, here any small error in initial values of ignoralde  mor-

dinates increases exponentially (l~ut not ]il~early)  with tinle,  so that  two motion  trajectories

which initially were i]lclisti]lgltisllal>le  (becallse of finite  scale of observation), (liverge  exlm-

nentially,  and therefore, a I)el]avior  of tl]e dynan~ical system becomes unl)redictal)le.  B~lt

is Sllch a “lllllltimllle(llless”  of trajectories consistent with the lmsic  mathematical russllxlll>

t i o n s  a b o u t  m o t i o n s  of (Iylla]]lical  systen~s”? This prol]lenl  will be disc~wsed  in the next

sections in connection with l)re(lictal)ility  in classical dynamics.
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3 . Dis t r ibu ted  Sys tems  and  Fa i lu re  o f  d i f f e ren t i ab i l i ty

There are two ty~xw of flistriljutml  systtvl~s - lly])erl)cjlic  :illtl ])aral)olic  -  Jvllic]:  (’all

Illo(lcl dyllalllical  Iwllaviors.  (Elli])tic eq[lati(jlls  axe ill-l  )msr[l for till~c  (Lvollltiol]  ]Jr[wesst’s.)

Distril~lltt~cl  clyll:il:]i~`[il  systt~ll~s  (`:t]~t~xl~il)it  lll()rt~scj])llistica  tc~[ll)t~l~avic) xssll(.lla  stllrl)~llt~l]cc~

(wlloserelatioll  to(’llac)si  sstill[  lisl~lltc[l), Ha~lall]:lr[l’s illsta}JiLty(Z:ik,  \l,, 19S2a. 1). c)

w’l]icll  is a,ssociaticl  with fai lure of llypmlmlicity  all(l trm]sition to ellilJticity.  forlnati{)ll  of

c~llll~llative  etiects (Zak, 11., 1970. 19S3),  t’tc.

.Actually,  all these  phenomena are associated with spatial etimts in distril)utecl  dynam-

ical systems res{dting  from additional mathematical restrictions requiring CIifferential)ility

of (Iyllan]iral  l~arallleters with rt’spect  to sl)atial  coorrlillates. But are these  restriction al-

ways  col]sistexlt  with l~llysiral  l]atllre of Illotiolls ‘?  Tl~c follmvillg  exaIlll)le  S11OWS tll:it  s~icll

restrictions Ill:iy lead to Illlrealistic solutions.

Consider an ideal filament stretched in a vertical direction, a.s SI1OWU in Fig. 1. Let

[M crosscl~t  it in a middle l}oint al]d  observe the behavior of upper and below }>arts. The

Iwlow  l~art will he folding up in a “thick  point”, losing differelltiahility  of its collfig[lratioll,

The upper part will preserve differentiability of its col~flguratiol]  in an open interval  ( wllici~

does not include the free end), I]ut at the end small initial distmbances  will accumtllate

ancl I]ecome  infinitely large (snap  of a whip). Both of these effects are lost in the dynamical

model based upon differentiallility  of the dynamical parametms  (for the below part of the

fi lament )  and upon th6 Lipschitz  condition at the free el~cl (for the ul)per  l)art of the

filament (Zak, M., 1970).

4 . Open Problems

As has been illustrated l~elow,  the evollltion  of ignorahle  coord ina tes  may  be flm-

damt=ntally  different  from the evolut ion of l~ou-ignorab]e  (or ])ositiol~) coorclillates.  For

imtance, the growth of position coordinates is linlited  by the boundednes.s  of the systeln

e:lergy,  ancl consequently, their instability cannot  persist: the system must find an alter-

Ilatite  stable state. In contradistinction to that,  the instability of ignorahle  coordinates

(which is calletl an orbit~ instability) can l~ersis  all the time

stable state. In l~articu~ar,  the indifference of the energy  to

ters is respom+il>le  for such phello;uena  as tllrbltlenct=,  chaos,
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uniqueness of solutions. In turl],  the occurrence of these I)henomena  questions the I)a.sic

mathematiczd  assumptions alxmt the claw of flulctions  ill  whit-h the flynamical  syste Im

are {lescril~ed.

The answers  to these q~lestions,  as well as new  rel)resentatioms  of chaos and tu~l]~dence

will I)e [Iisrllssml  ill this I)a]wr.

I I . I N S T A B I L I T Y  I N  DYNANIICS

1. Basic Concepts

\Iost of the dynamical  processes are so co]ul)lex  that their ~lniversal  theory w’l~icl~

WOU1{l  capt~lre all the details during all  the time periorls  is tll~thinkahle.  That is wl)y tllt~ art

of matl]ematical  Illodellillg  is to extract only the fundamental aspects of tl]e ])rocess  allcl  to

~leglect its insignificant features, witl]out  losing  tl~e core of information. B\~t “insigllifical]t

features” is not a simple  concept,. In many cases even vanishingly  small forces ran cause

large changes in t hi dynamical system I]aran]eters, ancl such si tuat ions are ixltllitively

associated with the concept of the instability. Obviously the destabilizing forces cannot

be considered as “insignificant, features”, and therefore,  they cannot be ignored. But

since they may be humanly il]c]istillgllisllal~le,  ijl  the very lwginning,  there is Ilo way to

incorporate them into the model. This  s imply means that the model  is not adequate

for quantitative description of tl~e corresl)on(lil]g  dyl]amical  l>rocess: it In[wt I)e changed

or modifiecl.  However,  the illstabitity  delivers an ilnportant  qt~alitative  information: i t

manifests the boundaries of applical)ili  t y of t lle original model.

We will distinguish short and long. ternl installilities. Short-term instability occurs

when the system has alternative stabie  states. For (dissipative systems sllch  states call l)e

represented hy static or IJeriodic  attractors. In the very beginning of the post-instability

transition period, tl]e Illlstal)le Il]otion  canl~ot  Ix> tracecl  q[lantitatively,  but it becollles  n~ore
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and more deterministic as it approaches the attractor. Hmlce,  a sl]ort-terln  instal)ility  (IOVS

uot necessarily require a lnmlel  lllo~lification. Usl:ally  tl]is ty]~e of illstalJility is associatt,,l

w’it]l  Imunded  d e v i a t i o n  of Imition  mor{li]lates  w h o s e  rh:ulges  affect  the energy  of tl~t~

Systt’m. Indeed, if tllc  growth of a lnsition  coordinate  ])t~rsists,  the ellt’r:y  of tl

Wolll(l  1)(’(’olllt’  11111 )01111 (1(’(1.

Tile lolig t e rm il~stal)ility  occ{~ls wllell tile systell]  clotw l~ot nave  al] altt~rl]at

2. Orbital instability

a. Ignorable Coordtnatc$

A s  nlelltioned  the Intro  (\llctioll  (st-e (5 ) ) ,  tile  coorrlillate  qa is called ignoralie  if it

does not enter tilt= Lagrallgian  ftlllction  L as well as nonconservative generalize~l  forcfi~s  Q:

(9L
—= O, Q&=()aqfi

tllm-efore,

i3L
—  =  P. =  Co?lst
oqm

i.e., the generalized ignorahle  impulse Pa is constant.

(11)

AS follows from Eq.(12),  there exist such states of dynamical systems (called stationa-

ry motions) that all the position coordil]ates  retain col~stal~t  value wl]ile  the ignoral)lt’

morclinates  vary in accordance with a linear law. For examp]e, a regular precession

heavy symmetric gyroscope. is a stationary motion characterized by the equation:

@ = Const,  lb = Const,  d = C’otlst

of a

(13)

where the ang~e of prt=cessioll  * al~d t~~e a@e of pure rotatiol]  @ are igllorable  coordinates,

while the angle of Illltation  @ - an a:]gle  for::lecl by the axis of gyrost-olJe  and the vertical

is a position coordinate.
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Obvious ly ,  s t a t iona ry  motions  are Ilot stal)le with respect to ignorable  velocities: a

small rhange  in ~G at t = O yields, as time progresses. an arbi trari ly lar,ge changr  i~] tht,

igll~ra~jle  coorclinatrs  tl~elns(~l~{~s. However ,  since  this rhmge increaws linearly (hut  uot

t>xlxnle]]tia]ly),  the motion is still consi(lere(l  as l]re~lictal)le.  Ill particular, tl]e Lyap IIIK)V

t’x])ol](’llts  for stationary  I]lotiolls  arc zero:

u liln
( )

[l(o)t
= ; 111 — =0

J(o)—o , f-xl d(o)
(14)

H o w e v e r ,  ill case of Ilc)nstatiollary  motiom, t i l e  ignora])le  coor(lil~ate  can exl]i])it  Illore

so]~llisticatecl  Imhaviors. In” order  to clemonstrate  this, let us consider  an inertial motion of

:i particlt=  .\l of unit mass on a s:nootll  l)se~l(lml~llere S having a constant negative Cllrllitllre

(Fig. 2):

c;. = C o i l . s t  < 0 (15)

Remembering that trajectories of inertial motions must be geodesics of S, we will con]pare

two different trajectories a.ssmnil]g  that initially they are I)arallel  and that the distance

between them, f~, is very small.

As sllowll  in clifferential  geometry, the distance, between such geodesics will exlx)xlel~-

tially  increase:

~ = t,em’, G O  < 0 (16)

Hence, no matter how small the initial distance (o, the c~mrel~t distance ~ tencls  to infinity.

Let us assume now that the. accuracy to which the initial conditions are known is

characterized by L. It means that any two trajectories cannot be distinguished if the

(Iistance  between tl~em is less than L, i.e. if:

The period during which the inequality ( 17),  holcls has the order:

a

At- 1 ln~
IFZFI fo

(17)

(19)

However. for

t>>llt
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these two trajectories diverge sllcll th:it they call h (Iistingushd  and mmst  IN collsidwd

as two clifferent  trajectories, \loreover,  tile {list:il~ce  lx’tweell  thelll tends to  i]: fillity  evml

if 50 is small (hut not il]finitrsilld). T h a t  i s  wl]y tile  lllotiol~, c)l~ce rec~)r({ecl, ca~~l]ot

lw rel]rcxluce(i  again  (tlllless  tht’ ini t ia l  rollclitions  are klIow’11  exac t ly ) ,  M1(l  {’ollst’(lllt~:ltly,

i t  att;iills  stoi-ll:i.stic fc:it~u

(’ollstallt:

cl= lilll
t-ml d(o

Let  IW in t roduce  a system of coordimtes  at the slwface  S: the coord ina te  ql alonq the

geodtwic  meridiam, and  the  coord ina te  q~ along the lxmallels. In differential geollletry

sllch  a system is called sell~i-geo(lesic  al. Tile square of the distance lmtweml  adjacent point

ol] the l~st=ll[losl~l]ere  is:

(1.s 2 = g]l  dq; + 2g12dqldq2 + gndq; (21)

The Lagrangian  for the inertial motion of the particle ?vI on tl~e pstw~dosphere  is twl~rt~ss(>(l

via the coordinates an~l their temporal derivates as:

anti, consequent 1 y,

while

(?3)

(24)

Hence, ql and q2 play roles of position and ignorable  coordinates, respectively.

Therefore,  an inert ial  motiol~  of a partirle  on a pseudosphere  is stable with reslwct

to t~le lmsition coordinate ql, I)llt it is Ilnstal)le with respect to the iglloral>le  coordinate.

However, in contradistinction to the stationary Inotions  co]lsidered  above, here the il]sta-

I)ility is Cllaracterize{l  I]y exl>ollel~tial growt}~ of tl]e ignorable  coordinate, and that is wily

the motion becolnes  unpre[lictable,  It call  I}e S1)OWI]  that SUCh a lnotion  beconles  stochastic,

(Arnold,  V., 1988).
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11~ tl]e collrse  of tllt~ illstal~ility,  t i l e  veiority  llla,qllitll~lt~  Iv]. allcl  collseq~lelltly.  t h e  total

~llc.~gv,  lell~ai]l lll~cha]]g~~d,  Wl]ile  all t i le  cllal],ges affw’t c)lll~  ~. i.e. the flirection  of motion,‘ .

I n  c)tller worrls.  orl)ital instahi]ity  lea(!s to  rtvlistril)ution  of the total  tvlm,qy  lx’twct~l~ tl]e

roorclillattvi,  al~[l it is cila,racterizt’{1  I)y l)ositive  Lyal)(ul~)v  exl)ollcllts,

Tl]e resl~lts  descrilml above were  relate(l  to inertial motions of a particle on a smooth

s~lrface.  However, they can lm ea~ily  generalized to motions of any fillite-clegree-  of- freeclol~l

mcc-hanical  system by using  the concept  of configuration space. Il~(lee[l, if tile mechanical

system has JN generalized coorrlinates  ql (2’ = 1, 2, . . . . .\r) and is rhararterizml  l)y the kinetic

energy:

W  =  
Oijq’q] (27)

then the configuration space can be introduced as an lN-rlimewsioual  space with the follow-

ing  metric tensor:

g~] =  O,; (2s)

while tlw motiol~  of the. syst,enl  is represented by the motion  of the unit-mass particle iu

this configllration  space.

In order to c.onti~lue  the analogy to the motion  of the particle cn~ a smface in act~lal

space  we will  consider only two-dimensional suhspaces of the N-dimensional ccmfiguration

space, without 10SS of generality. Indeed, a motion which is instable in any such suhspace,

has to he qualified as an unstable in the entire ccmfiguration  space.

NOW the Gaussian ctlrmtllre  c)f a t wo-dimmwional  configuration sulx+pam  (q 1, q2 ) fol-
d

lows from the Gauss formula:

10
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where  the comecticm coefficients  r:k aIt> twpressrd  via the (’hristofft’l  symlmls:

(30)

wllilc

(31)

c a s e  o f  inertial  Il]otiolls,  t]le traje(’tollt,s  of tile  Iel)resclltative  I)axtirle  ::)l~st  l>t’ ,geo(lesi(,s  of

where s is tlw arc coorrlil]ate  along tile  )Jartirle  trajectory:

d.< = (ltldq ’dql (33)

But then:
dT
z= o (34)

which is the condition that the trajectory is geo(lesic,

If tl]e Gauss ian  curva tu re .  (2!3) which is l~niqtlely  {{dined  I)y tile  I]arallwters  of t]le

dynamical systeln  (2:), is negative:

G < O (35)

then tl]e  trajectories of inertial motions of the system originated at close, hut differel~t

points of the configuration spare diverge exponentially from each other, and the motiol],-
l]econ~es ~mpredictaljle  and stochast ic . Some examples of orbital instability in inerti:il

motions are clisc.ustxl  by Zak, M. 19S51).

c. Orbital Imitability of Potential Motion.~

Turning back to the motion of the particle M on a smooth pseudosphere  (Fig. 2),

let us depart from inertia] motions and intro(l~lce  a force F acting on this particle. Fc)r

noninertial  motions (F # O) the trajectories of the ])article will not be geodesics, while the

rate of their deviation from gecxlesics  is characterized I>y the geodesic curvature y. It is

obvious that this c.urvatl~re  lnu,st [Ielwnd  o]) t l]t= forces F:

x= Y(F) (36)
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L, Synge ( 1926 has shown th:it if tht> forrc  F is potential:

F=---~rI

( J2n ~k On
c?’o -t- 3# + ~ —— —

Ii’ aq’aql  – ‘ ) dqk )
71’rl] < (); i,j =

Here 17$J a r e  defined  I)y Eqs.

norlnal  n to tile trajt~ctory.

(37)

)y the fo]lowin,g:

1,2 (3S)

( 3 0 ) ,  :ill(l  ?1’ are tile colltralyiriallt  colxll)ollcllts  of  tile Illlit

y in ( 3S) can be expresser via the l]otelltiai  force  F:

(39)

As follows frmu (3S) and (39), the ron{litiou  (38) redl~ces to (35) if F = O.

SIlppcm fox example, that the following elastic force:

proport ional  to  the normal  deviation c from the geodesic trajectory is applied to the

particle AM moving 011 the slnooth  pseudosphere.  If the initial velocity is direrte(l  along me

of the meridians (which are all geodesics), the unperturbed motion will I>e inertial, and

its trajectory will coincide with this meridian since there c = O, and therefore, F = 0, In

order  to verify the orbital stability of this motion, let us turn to the criterion ( 3S ), Since:

. .

for the unperturhecl  motion, one obtains the condition for orl]ital stability:

c-d
Go+w > 0 ,  i . e .  cr~ < –2WG, G  < 0

Where

l%’ =  ;7)11):

As in the case of inertial motions, tile il]eqllality:

(41)

(43)

(-M)



leads to unpredictable (stochastic) nlotions  which  are cllaracterize(l  Iy:

For

tllc’

~_.———.–

gz v C;(J -- g == Collst  > 0

pIUT illm-ti:il  Illotiol]s  (o = O), Eq. (-ltj) rt)[l~lccs  to Eq. ( 15),

After tl]e (Iisrovery  of clla[)tic  attra{-tors,  tile  stochastic Illotiolis  wllirh me qelleratml l)y

illstal~ility  and am rlmracterizd l~y IJr)sitive  Lyap~lllov t’xpo~lellts,  arc calle(l  cllziotic.

Hence, t]le il]eqllalitim  (33)  a~ld ( 5 0 )  (sal~  l)e asso~.  iate[] with rriteria  o f  cliaos:  i f  tl~e

left llal)d  Ilart in (50) is  lwllllclt~~l  a w a y  f r o m  z e r o  l)y a l~egative  l][~ll~lmr  -B il] all tile

collfigllratioll  space  where the motion call  ocmm, then the Illotioll  will I)e chaotic, and its

lmsitive  Lyap[ll]ov  exponent will lM:

Unfortunately, this critdrioll  is too “strong” to be of practical sigl]ificaxlce:  it is sufficient.

hut not necessary. Indeed, this criterion ass~unes  that not ol]ly glol)al,  l)ut  also tile  loral

Lyaplmov  exponents are positive in any point  of the col]figuration  sl)ace.  .At tl~e sall~e  tillle,

for many chaotic motions, local Lyapmov  exponents in certain (Iomaim of the configuration

space  are all negative, or zero, althotlgh  some of the global  exl)onents  are still  ]Iositive.

d. General Case

Following .J. L. Synge,  the results for the orbital instahilit  y of inertial and potential

motions for a system of material points  can be generalized to arbitrary n~otions.

Since the motitm of a system of material points in the configuration space with the

metric (28) is represented by a unit-maw point, the momentum equation follows from tile

second Newton’s law:

q“ + r:,t,, j”y’  = Q ’ (47)

where Q“ is tl]e  force al>plie~l  to the poil]t.  Let q’ lM the coordinates of the representative

point M Illoving  along an undisturbed nat[~ral  trajectory C, and (q’ + l~r ) the coordinates

of the corresponding (sinlllltalleol~s)  point  hf* of t]]e disturbed natllral trajectory C, while

T)r is an infinitesilllal  c]istllr]~allce  vector. T]le cc~nclitio~]  for  stal]ility  of the xnotiol] is that

the magnitude of the (Iistllrl)axlce  vector sIIc)II1(l  remain permanently small,

13



introducing a unit dist~lrhancc  vector  ~lr co-clirectiollal

1)
 r = rljtr,  (l,,,,,  }l’’i}f” = I

with 7jr, so that:

(4s)

Here r:,,,, are the Chris toffel  syn~bols  defined hy Eq. (30 ), and

Q ( i)Qr
I-s = )–— + I’;,l Q” w,, fir = r:),,, ~ty’,ji  = IjLrl

(9q 1

(31

while the metric tensor of the configuration space is given hy Eq.(27).

E q .  ( 4 9 )  leads to a sufficient  c o n d i t i o n  for a dynalllical  s y s t e m  given  in tile forln

(47) to be exponentially unstable. If the Riemannian  c~lrvature of tl~e ll~anifolfl of rollfiq-

[Irat ions corresponding to every t we-space element x ‘1’ x” containing the directio:]  of tile

given trajectory is bomlcled away from zero by a constant negative value, and Q,),,,.r  “’~”

is hounded away from zero by a constant positive value in all the domains of the configll  -

ration space where the Inotion  can occllr, then tile motiotl  will  he exponentially unstable:

since this instability persists, the Inotioll  will  attai]l  stochastic  features (as in the case  of

the inertial or potential l:]otiol]  of a l~a~ticle on a sl]loot,ll pseuclosld]erw),  allcl therefore, it

w i l l  heconle c]lmtic.  .A(’tttally t]l~? Collditioll  (38)  Wl]icll  was forll]lllaterl earlier withollt  a

proof, follows directly from Eq. (49).

14



OI}viomsly, the persistency of tile illstal)ility  in Eq. (49) call  ocrur oxily [ll~e to a rol1tri-

l~~ltion  of the exponential  growth of tile  igll[wal>lc  (-mr~linatm  into  tilt’  total  lllagnitu(le of

tllv f{istllrlxmce  vector ?). F o r  in>tance, ill the rasr of illerti:il  ll~otiol~”  of tllt~ ])article \l on

a .Smooth ]) Sell(k@leIe, tile {Iistllrljalll.e  Vt’(’tox call lx’ I’t’prtwqlttwl  l)y t i l t ’  (’oml)ollellts  6

[III(1 v JVllirh  :irt’ (’()-(liret’tic)ll~ll  ZInd llorm:il  to t he Illll)t’l’till’])t>[l ( gt’()[lt’,sic ) trajt>ctory.  The

co]]ll]ollcl]t  u (’OX It’slx)xl{ls  t o  tilt’  ignor~il)lt>  roorclillate, all(l its t’vol[ltion  i s  (Icwcril)t’[1 I)y

w h e r e  S0 and fo are the ini t ia l  mnclitioms  at t = O for the lnotioll  lfelocity  a long  the

trajectory, and the pmition coordinate of the disturl)ance  vector, respectively. In spite

of sollle  Iixl]itations  c)f tl]e results rlescril>ed  above (tile conditions for chaos are sllffirient.

but not necessary, the forces Qr depend  only upon coordinates, I]llt Ilot ulml]  velocities),

t h e y  nevmtlleless  elllci(late ]Jllysical  origin  of  orl~ital  illstal}ility,  chaos,  ,EUICI collseqllt~lltly,

of lllll]re(lictal)ility  of motions in classical dyuamics.

3. Hadamard’s  Instability

a. Geneml  Remark.*

The reslllts presented in the ]]re.vi-ous  section can lm applied to distril)uted  systellls

after a discretization  tec]nliqtle  which redltces  them to a fillite-clixllellsiollal  sys tems .  For,
instance, as noticed by Arnold  ( 1988), an il~visci(l  stationary flow with a slllootll  velocity

field:

U* = Asin Z+ Ccos Y,vY =  Bsin X+.4 cos Z, v: =  Csin Y+ Bcos4Y (/55)

l~as ~haotic  trajectories X(t), Y(t), Z(t) of fluid  particles (Lagrangian  tl~rl]~llt=uce)  rl~w to

n e g a t i v e  curmture  of the configuration  s]~ace which is  obtained as a fillite-flilllellsiollal

approximation of a continuum. However, there are some special types of instability in

distril)uted  systellls  wllicll  call I)e lost ill  t~le rollrse of t]le (Iiscretization,  and t]ley  w i l l  I)e

foclwed in this section.
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.4s noticed in the previous secstim+  tlw long-term illstahility  which  may’ lead to (’ham,

is associated with the orl)ital  instal~ility+  i.e< with the instability of ignorable  coordinates.

HowweI, in distributtwl  systems [lestsrilwd  Ijy ]mrtial  differential t>q~mtioms,  there is another

possil>ility  for long-term illstal)ility  w’llich  is :is>tx’iated  with tilt’  flecrease of scale of lllotiol~s,

i.e. wit]] tllt~ growt]l of sl)atial  (lt’rilates of tile  systrl]] ])arallwters. 111 mathematical

terms it nl(’ails a failllre of flifferclltial~ ility  of tl]e sol[ltiolks to tilt’  (Solxes])c)llclillq  ,govt’rllil]q

t=quations.  Ho\veveI,  a n  u n l i m i t e d  growth  of slxttial  clerivates  mwst lw collsistmlt  ~vith

tllc  Imtlll(le(llless  of  energy. I:~dee{l,  tl]e stresst~s ill cmtinumw  Illerlia  cle]xvl(] llot 111)011

[Iisplacmwnts  c)r velocities. Ijllt ll]mll their gra(limlts,  i .e . Illmll the i r  s]~ace cleril--tives.

Hence, We have to fil]d s[lch sit~~atiolls wllexl  all l~l]lil]tited growth of these ~lmi~ative  [1(ws

not lead to Illllmllxlrlt’rl  strt’sses.

Tllrlli]]g  to geometry of [lisl)l;ict~]]]t~l~ts  :ill[l  tl~eir  gra[liel~ts  in (.oxltill~la,  let us i]]tro[lllre

the displacement vector:

u = r – ro (56)

w h e r e  ro and r are the ra(lii-vectors of  the same part icle lwfore and after Ilefornmtioll,

respectively. In elastic bodies, the stress tensor depends (~pon the displacemm]t  gracliell

V u via the strain tensor  (:

f=
[ 1 [; vu-t (’Vu)T + u“(~u)~  = j vr(~r)” -  ?

1
(57

where ? is the Imit (the. initial state) tensor, while the current state metric tewsor  is defined

a.~ :

!7 =pf+fi

The tensor-gradient V r in  (57) can be decomposed

Vr =  CEl (39)

where C is a symmetric tensor:

C=+ b”d’”

and B is an orthogonal tensor:

‘=+[vr”(vr’7’1”2 (Vr)7’ =( B-’), det B = l
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. 4 s  fo l lows  f rom (60) ,  the  s t r a in  t ensor

:tnd t’{]llserltlt~l]tl.v,  the s t r e s s  ttvlsor  CItqx’ll(ls  c)llly  lIIx)I] t i le  sylllll]t>tric ]Jtirt of tllt~ ttvlsor-

,gracliel]t  V r , all{i  (l{x~s  I]ot (lt’]x>l~(l  ~l]x)ll its {)rt]]ogolltil”  collll)c)l]tqlt  B w]lirll  ,’orrt~s))ol]~]s

to rigi(l  rotations of elelllt’lltary  vc)l~~ll~t’s. However,  ill[lirectly [ill [Illlilltitt’cl  qrmvtll  of tllt,st>

r o t a t i o n s  can lt~a[l  to IIII1)OIIIICICY1  stresst~s ill tl~rt~e-[lill~t’llsiol~al  elastic Imrlim.  I:lcle(’cl.  [is

follows  from tht> iclt=ntity:

VxVr=O (63)

the components of the tellsor-,ql:lclit’llt V r must satisfy six aflflitiol]al  constraints which

are Calltxl t h e  collllJatiljility t’q~latiol]s. L(xMely speakingl  they  fo l low from the require-

Il]e:lt tl]at after (Iefonllatiolls  tilt’  colltinu(lll:  s h o u l d  not liave any  ““l~oles” or ‘“cracks”. Ill

geomet r i ca l  terms, Eqs. (62)  represent the fact that after deforlllatiol~s,  the actl~al  s]]ace

remain Euclidean, i.e. the clwvature tensor is zero:

R=O [64)

However,  six col~straints  imposed tllmn  the tensm--gra(liel~t  v r l)y Eqs. (63), or (64) are

also not in(lelxm~lellt.  Indeed, according to al~c)ther identity:

v.vxvr GO (65)

which holds  even if

VxVr#O (66)

and which is equivalent to three scalar equations, only three of the six constraints (63)

a re  t rue  independen t .  In geon~etrical terlns,  Eq. (65)  can be associatefl  with tile  Biallcili

identities, (W. Fluge, 1962).

Thus,  nine  con~ponmts  of the vector-gradient v r must

Conlpatihility  eq{lations,  anfl therefore, if all s ix  componen t s

satisfy three independent

of the stress tensor f are

given, then the remaining three components of V r a,lld  consequel~tly,  all the rigid rotations.

will be uniquely defined.  This Illealls  that ill isotropic three- {Iinlellsional  elastic I]o(lies, all

unlimited decrea.$e  of scale of Inc)tic)l]s  would lead to ~lnl)ounded  stresses which is physically

impossible.
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Let  us turn tc) ol~e-[lill~el~siollal  continua (filanmts).  In this case,  rigid rotations define

the external  g e o m e t r y  of the mode l  ( the  ro ta t ions  almut the l~illormal  to the filallltvlt

c(]rrt’slwl](l  to tile first curvature, and the xotatiolls  almut  the tangent  to the  f i l ament

rorrt’slmnd  to t]le secoll({ Cllrwtllre, 01’ t w i s t ,  F i g .  3 ) ,  all(l t]lc’y C1O Ilot clt’pell(l  llpol] tile

t’lol]gatiolls  of tile (.ltrve \vllicll  (It’fille  tllr s t r e s s . In[lcwl,  let (M introduce the f i l ament

(67)

where  ?.? l~lays  tl~e role  of all Elderian  coorc{inate.  Tllel)  tile  :notiol~s  associattwl  with cllallges

of tile  internal  gec)metry,  and tl]erefore,  tile  s tresses are (Iescrilml  ljy tile  fll:]ctioll:

where s is a La,grallgiaxl  coordinate  of illrlivirl~lal  part icle.

At the same time, the curvatures of the filament configurations can be ~xpressed  as:

(69)

Consequently, both curvatures are independent upon the internal geometry characterized

I)y (6S ), and ill  particular, upon the stress defined by the clerivative  thj/d.s.

Tl~is llleal~s  that unlimited growth of the curvature may not t-a~~se stress at all, and there-

fore, the instability in the form of unlimited decrease of scale of motions is possil)le  (Fig.

31)).

The situation becomes more complicated in two-dimensional continua (fillns,  men~-

branes  ). Here the internal “jgeometry  is defined I)y two-dimensional versions of Eqs. (56)-

(63), while the external geometry is described hy  the coefficients of the second fllnclamental

form:

(70)

where tp’ a~e coordinates on  the surface, and n is the unit normal to the surface.

However, these coefficients are not illdepen[lent:  they are coupled  with the strains hy

three compatibility equations:



(71)

while

1101)11  =  11!7’’ 11-’ (7.3)

Hence, in general, three rot+ficients 6,, are rlefillecl  hy the straius  6,, frolll  the tluee  e q u a -

tions (71 ) aud (72), anfl  ~ollseqllcutly,  change  in 6:) affects the strains fi~.

?Jevertl~eIewj, there are sit~lations when the unlimited growth of  clmvat~~re  l]~ay ]lot

effect  tl~e stress at all. Ill order to (lescril~e this case, recall tl~at on a s~u-face  with l~t’qative

or zero Gaussian curvature

there exists a family of asymptotical lines where the second fundalnental  fern] is eqtlal  to

zero:

while the angle 4 between  an asymptotical line and the coordinate line +1 is found as:

6,* Jl); , – 6,, (522
tan #=-—*

l), , b,,
, (L,, +0)

Selecting the coorc{inate tjl M an a.sylulltotic  line,  one obtains:

a

tan fj=o (79)

and, m follows from Eqs. (77) and (78):

t!)~z = o (s0)
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Yow  it is obviolls  that along tile  asymptotic line tile rllr~atllre  61 I can  he st=lectecl  arljitraxily

witho~lt  affecting the parameters of the illtmmfil geometry ~,j, .w)rl consequently, the stress.

II)[lmd,  since L22 = O, h, ~ is t~liminatwl  frt)l]~ Eq .  (71) .  II] additiou  to t}:at,  as f o l l o w s

from Eq. (72):

(s1)

Tl]e  (derivative Ohl , /OU)l is not (lefillt>{l, i.e. t h a t  asyllll)totic  line 01 roillci{lm  w’itl]  tilt>

characteristic of tile  paxtial.  {lifferel]tial  eql~ations  (81 ) allcl (S2 ).

T h i s  m e a n s  t h a t  the clmwture h] 1 can lM chosen  arhitrzuily  along the a s y m p t o t i c

Iilles of the s~wface without effecting ally parameters of the film including stresses. In other

wor(ls,  all l~nlilnite(l  growth of the ctlrvatllre bl 1 may l>e cmlsistent  with the [IIl\JotIIIclecllless

of  s tresses and it can lw a.ssoritited  with the formation of wril~kles along tl~e asyl~~l>totic

lines.

So far we were concerned with elastic continua. Turning to fluids, one should recall

that their stresstw depend  only upon the velocities, hut not i~pon the rlisplammellts.  Thtit

is why an Imlimited  growth  of any component of  the displacement vector  (M),  or of

the tensor-gradient (59) is consistent with the Illll>ollll{lecllless  of stresses, and it can  l~e

~associated  with the Lagrangian  turl]ulence.

In terms of velocities, the situation is different. In order to demonstrate that, recall

that in viscolls  fluid the s tress  tensor depen~ls  llpon the veloci ty gra[liellt  V v via tile

time derivative of the strain tensor (57). The velocity gradient V v has the same type of

structure a~ the vec,tor-gracliellt  V r: it can be {Decomposed into a symuletric  tensor of tile

rate. of strain:

i= ;(VV + [WT1 (s3)

ancl an anti-symmetric tensor:

# == ;[VV -  (vv)~]

which is equivalent to the vector of vortex:

(s4)

(s5)



while

Since

oIle (’Ollles

all(l (65):

eqllatious.

gra[lient. al](l fc)r that  reason,  all ~lllli]ltite[l  growth of tl]e vortires ill visrolls  fltlicls wo(~(l

lead to lmlilllitwl growth of stresses.

The si tuat ion lmromes  different  in inviseid  fluids  where stress is defined only hy a

scalar - tile divergency V X v. But since  any velocity field  can be uniquely defined bawd

upon two illclepell{lellt  rompments  of its g~adient  V v, which are the flivergellry  V x v and

tile  vorticity  V X v, (>lle {Sollclll[les  that  an ulllimitt=d  g r o w t h  o f  Vortirity  ill illvisci(l  fluid

m:iy uot lead to lmlmunded  stresses. T h i s  conrlusio:]  ran I)e loosely al~]~lit’(1 to nlotions

of viscous fluids characterized hy  high Reynolds numlm when visrms stress are ignoral)le

in rompanson  to the inertia forces. In this case all “lllllilnited” growth of vortict’s  can Iw

~a.ssociated  with turbulence.

Tlltis, in this  sect ion we have analyzed a possil)ility  ‘in ~>ril~cil>le”  of an ~~l~!il]~ited

decrease of scale of motions in continl~a  frol]l  the viewl~oint  of a rollsistmlcy  of this tylx’

of il~stability with the boundeclness  of stresses and energy.  This lneans  that if s(tcll  an

instability exists, it cam he folmd  oldy ill one-or two-dimensions] elastic  Illo[lels,  or in fluid

motions with high Reynolds nmnlxx.

b. Failure of Hyperbolicity  in Di.*tributed  Sy,9tem.~

Ylathematicrd  models of continua are I)ased  on the assumption that the flmctiolls

describing their states can he clifferentiated “as many times as necessary” :it  any  point

exclusive of some special surfaces of discolltin[uties  simulating shock waves or coinciding

with tile f.llaracteristics  of the governing eqllations. In other words, these functions must

be at lea..t l~iece-wise  clifferel]tial]le,  Frolll  tile l>l]ysical  viewpoil~t  it lneans tha t  any  pc)illt

as a center of mass of an i]lfinitesimal  vol~une rel)resents  all the properties of this vol-

ume. Olwiollsly,  the asslunption  al~ollt slnootllness  of tile functions allows us to use tile



#’

mathematical  tecimiqlte  of flifft’1~’llti;il]le  equatioms,

However, this artificial nlathmnatit’al  linlitatioll  follows l~eitl~t~r  from the ~>ril~cil>lt’s  of

n~echauics  nor  f rom the  clefinition  of a col~til]t~lml.  The l)ric~ I)ai[l  for SIICJ1  a mathel]):it  -

ira]  cc~llvellit’llce  is illstaljility  ( in t i l t ’  rlziss of slllo{)th f(lllctiol~s)  of tile  st)llltio]is  to  tile

corresl~ol]clillq  govt’rl~ilyq  txl~latiolls i]) soII~e rqgio~ls  of tl]e l)arax]lete~s.  T ]li s  illstal)ility  i s

clmracterize(l  I)y ulllimittd  decrease  of tile  scale  of tile  Inotiolls,  in tl]e (’ollrse o f  wllicl] tile

~ierivatives  of tile  correspollclill,q  f~l:lctioxls  t e n d  t o  infinity  altho[lgh  tile  f[u~cticn]s  tlltvn  -

SCJWS remain f i n i t e .  In other  WON{S.  the s o l u t i o n  tends to  .-go out”  froll] the ,.]ttss of

different  ial]]e fu!lctions.

\lost  of  tilt’  iustal)ility  l}llt’llollwl)a  lt’adillg  to ludimited  flt’creasillg  o f  t h e  sralt’  o f

continlta  motions are associated with tile  failure of hylwrlmlicity  of tl]e correslmll{lixlq

governing  equations, i.e., witl]  tilt’ appearalwe  of illlagina-ry  Ci]aracteristic  spee[ls.  ( Zak,

19821),c)

In order to illllstrate  this, we will start with the goverming  equations of mc)tion  of

elastic hoclies  in the following form:

‘~ = :%[G)I + 
‘“ ‘ = 1’2’3

1

where  u, are the [lisl]lacements,  11 is the potential energy  of strains, p is the density, F, are

tile external forces, and 2: are the material coordinates, posing  the initial value problem:

u: = U:

with the parameter & cm.

{

= -+ Sin ~oxl if I..rll ~ ZO

0 °
(s9)

t=o  = ifl X~l>XO, i=l,2,3

(~)t=, i = 1,2,3.

be mack as large as necessary, i.e.,

~o-+~

The region of the initial distm-l]ance  call  IJe arl)itrarily  shrunk, i.e.,

/10] -+ o

~1

(90)

(91)
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vu, L
L

(Y2 ul all,
Po -jp- = ‘1” A; ‘ ‘vl)ile  Ox, ‘0

,=1 ]+1

where

Then the solution to the eql~ation  (93) will contain the term:

(93)

(94)

95)

96)

an  illfi]]itesilnal  volume  ZUWIU1[I the Imil]t  xi. Hence, one arrives at

lull -+ cm,

in sl)ite of the fact that
I

tile  followil~g  sittlatif)ll:

(97)

(98)Iu,[ +0
t=o

However, strictly speaking, because of utilization of the goverui]~g  eq~~ation (S8)  in a lin-

earized foml, the condition (98) must lW weakened:

It.1:1 # O if I’ll:] +=0 ( 9 9 )
It=o

shows that the appearance of negative eigen-valws  of the matrix (94),

imaginary characteristic roots of the governing equation (88) (failure of

TIIe formula (99)

and consequently,

its hyperl]olicity)  leacls to the violation of a continuous dependence between the initial an’d

transient disturbances during an arbitrary short period of time and within an arbitrarily

selertecl vol(ulle.  Tl]is type of instal~ility  was first ol]serve[l  hy .7, Hadamarcl in connection

wit h the ill- Imstxllless  of the Callchy prol)len~  for the La]~lac.e equation.  Further  res~llts

with applicat ions to the illsta]>ility  of a string,  filll~ all(l free  s~lrfaces of elastic l~o[lies were

reported by Zak, ( l!X32h,c.  )



The result formulated above WM Ol)tained  ~~nder specially selected  initial (Sol]ciitiol]s

( S9), but it can be generalized to illclu<le  ally initial  mnflitions. Indecrl,  for eq\latiolls  (93)

let t,ht’ initial conditions be arllitrarily  {lt’fil]tvl  I)y:

(100)

allfl tile  correslmnding  soltltioll  is :

u , =  f,{x, t)

By altexillg tile  initial  rol~{iitiolls t o :

U(o, t) == u: + U:o (102)

where  u ,  i s  flt~fixle{l  in ( S9 ),  we ol~scrvt’ frolll  tile  precmling  arglllllellt  by  slllxJrlmsitioll

that Vanishillgly  small change  in the initial conditions would lead to ludm(mdedly  large

solutions.

To ol>tain  a geo:lwtrical  interpretation of the almve described instal]ility,  let ILS t~lx-11

to expression (97)  of the soIlltion  and note that if the second  derivatives f32ul/0t2, 13u,/0.f~

are of order ~o, then tl]e f i rs t  derivat ives dU:/Ot!,  dU$/i3Zi are of order 1, al~d u, are of

or(ler l/Ao. Hence, the period of time At. can be selected  in such  a way that the sec(Mld

derivatives will be as large as necessary, bllt the first derivatives and u, are still sllfficiellt  ly

small. Taking  into account that the original governil~g  equation (S8) is quasi-linear with

respect to the second derivatives and, therefore, the linearization dck,s not impose any

restrictions on their values, one can conclude that the Linearized equation (93) is vali(l

for the solution during the above- n]entioned  period of till]e  At., T~~rning  to the formllla

( 97) one can now interpret the solution by the function having an illfinitesimzd  amplitu(lc

and changing its signs with an infinite frequency ( v = A. ~ co). The first derivatives of

this  funct ion 01/&, all/Xl ~a.xl be small and change  their signs by fil]ite  jumps (with tilt’

same infinite frequency v) so that  tile seco]]cl  derivatives 82U:/~i2,  d2 u l/dz~ at the points

of such jumps are infinite. Thus, within an arbitrary small volume there is located an

arbitrary large lllll~ll~er  of points  at wllic]] tile strail]s nave jumps. From the mathematical

point of view, the fu:lctiol~  descril)illg SUC]l a field  of disldacements  U: is considered as a

c o n t i n u o u s  b u t  l~oll-{fifierelltial~le flll]ctioll.  T]lis  fllllctioxl  call  be sillllllate(l,  for illsta]lce

I)y the f~mction  with a nlllltivaluecl  deriwdtive.



C. THE CRITERIA OF HADAMARD’S  1NSTABILIT%

(103)

.+ssllnling  that Illllwrtllxl]ecl  st:ite  at this poil:t is cllmacterizecl l)y the initial stresst’s:

(105)

let Iw lltilize the following ex])ression for a variatiml  of the specific  potential energy  from

the initially stressed defhml  hy ( 104 j :

All =  TII$CII  +  Z’12dy12  +  Z’136~13 = ... etc. =  T,) f!ic,j (106)

(107)

(108)

(109)

(110)

(111)



where the stresses T,

)1,

are related to the lot-al cartesian  coordinates .r, , IP, .r3 at the poil~t

AI = a,, , i.e.,

(112)

(113)

( 1 1 4 )

Hence, the criteria of il]stal]ility  ZIIC:

Each ineq~lality  leads  to the failure  of differentiability of the corresponclil~g  component of

strains: (1 1, (12, orcl~, while the potential elwrgy  II(6I, ) has a local maximum.

Recall that all the shove-fornmlated results are reIated to an arl~itrary  ]Joint .MO and

-arbitrary selected direction xl, with the unidirmtional  initial stress T~l.

In the general case when all the components of the il~itial stresses are non-zero:

T:#O (11s)

one can decompose them into spherical and deviatoric parts:

where E is the unit tensor, ancl

3 3
To = ;~T,l, E T:’ == O

1=1 1=1

(119)



Now Eq,  ( 106) can he rewritten in tl~c following form:

~vl]cre  ((] is tile  sl)llerical  part of tile >trail]  tensor:

:illd il]stewl of Eqs. ( 10S) - (110), ol~t> ol~tail~s:

Consequently, the sufficitmt  conditions of the instability in some directim]s  at the fixed

lmint for an isotropical  elastic lnatm-ial  for which tl~e derivatives ~Ttj /tl~,j  C1O not {Iepmld

on a selected  clirection  .rl :

where ~~1 is one of the principle deviatoric  stresses,

The instal)ility  emerges in any direction if these inequalities are valid for all the prin-

cil]le deviatoric  stresses T,!:

p: < –W#J (i + j),
l]

because usually

For tl~e Hook’s lnaterizd  the criteria of tile  instability are expressed in terms of Yo\IIlq’s

lnodules  E and Poisson’s ratio v since

(9T,, E(I – v) dTij E

aft,
=  (,/+ 1)(1-2,,) ij,,,  =  V+l =  2G’

(lwJ)



if the initial  stress tensor  is spherical ( Tl~ = p), where E, C;,  mid p are the Young’s and

shear IllOd Uli~, and v is the Poisson’s ration, respectively.

d. Boundaries of  Applicabil i ty of  the Classical  Lhlodels of Distributecl  Sys tems

.411 the mslllts  discusser alx)ve  were  l>astvl  011 formal mlalysis  of xllatllt=lx~atical  llloflels

of elastic  ll]aterials,  allcl t h e i r  I)ractical  llsef~lll]ess  h a s  to I)e CIe!:lollstrate[l. The l]lost

ol]violls  and visual  al~l]lication  of  these resul ts  call l~e f~ll][l ill  the area of one an~l t\vo-

fiilllensiol]al  lnodels  SIIC1l a s  strings,  mcmhranes, etc. whose states are defined not only

by internal  geolnetry  (strail]s ), I}llt alsc) by  ex te rna l  geomet ry  (shalw). .4s shown in tlie

swtioll  a), ix] this lllodel,  ~lx]lilllite(l  {Itv’rease  of the scale of motions may he consistent with

the Imtmdednrss  of stresses and tvlergy.  The ~)rol>lem  of the shape instability there occtlrs

a.s a result of any local conlpressi(m  allfl mm]ifests  itself in wrillklilyg  ill  the co[lrse  of wl~icl~

the sha])e  looses its smoothness.

Examples

(a) For o~)e-cli,l~el]siol]al  continua S,IC1,  as an ideally flexil>le  il~extt=~]sil,le  stril]g, two

types of the characteristic speeds are ohtaimd  ( Zak, M., 1!368):

7 (130)

’31’ “+ ‘“ :)’ 1
(131)

where T is the tension, p is the linear demity,  $2 is the first curvature of the string’s shape,

ancl F,, is the normal component of the external tracking force. These cl~aracteristic  speerls

correspond to discontinuities  of the c~lrvatllre  and twist of the string, respectively (Fig. 4).

These conditions of the instability of the string’s shape following from the failure of

llyfiertmlic.ity  are given in the form:

T < O , (132)

(133)



The inequality ( 131) expresses the well- lmown  fact that a compressed string  is lu~stable

(the 10ss of the stability of tlie  first curvature, Fig 1).  The SIMIW of s[tch  a string ra~~l~ot

lw clcscril~t’d I)y differel]tial)le  flmctious, allfl, tll(’f)lt’tit’tilly.  t h a t  string  can lM rolle(l  {11)

ill a point.  Tl~e ineqllality  (  1 3 2 )  S11OWS t h a t  evml a stretchml stril~g  call  Iw l~llstaljle,  i f

slll)jcctecl  to tile  corresl)ollclillg  trarki]l,q  force  ( tilt’  1{)ss of tile >tal)ility  of tile  twist ).

These results  are gel~eraliztvl  to a ol]t~-{lill]ellsi[)tlal,  ideally flexil)le  l)i]x’ witllil]  wili(.11

all i~leal  fl~~i(l flows ( Zak, L1. 19 S21), c)

A;2=L T PP’us[-—–— J]l/2 ,
p+pl p+p’ (p+ p’)’

A;4 = -~
[

T F,, 1/2
11 + —--——–––t”–––––––– PP’ U2

p+p’ p + p’ (p+pl)fl )(p+f+j ‘

(134)

where  T is tilt= tellsioll  reft=rre{l  to tile  entire  l)il~e’s cross-  wctiol~,  pl is the linear density of

the fluid, and u is the velocity of the fluid.

Then, the coll(~it  ions of the fzailure  of l~ylwrholicit  y are given l~y

1
T < (Pypl) ‘2  ‘

T<~+du2,

(P+ P’)’

This means that a flow within the pipe destabilizes its shape. In

last results, let us consider a vertical, ideally flexible, imxtensilde

encl suspended in the gravity field, As’smning that the flow within

(133)

(136)

orfler to illustrate tile

pipe with a free lower

this pipe has constant

velocity, U., let us qlefille tile ~ea of tile illstal~ility  (Fig. 5). The tension T referred to t i~e

entire  pipe’s cross-section is given by

T = w’((~ –  ~)

where 1 is the length  of the pipe, x is tile  coordinate

< is ‘the ratio of the area of the cross-section occupied

(137)

along the length  of the pipe, and

by the pipe’s walls relative to the

entire cross-sectional area, Suhtitutillg  (3.9) il]to (3.7), one obtains the unstable area of

the pipe:

(138)



Hence, for the ideal flexible I)ilw, the free tvld is always  unstable. ( Such a phmlomcxmu

is well known  f rom the  experinlentso  ) In tile  l imit  rase U. -~ O, wllell  tile ]Jilw ral]  ljt’

collsi{le~ec{  as a string, the llmstal~lt=  area is (’ollrelltraterl  around  tlw  free end,  .+s sllowl~

I)y Zak,

tllc  frtw

(l))

Zak. J1.,

\l. 1970, 1983, such  an imtal)ility  ll~al~ifests  itself in an acr~lmlllatioll  of mlergy  at

, 1979, tilt’  clmracteristic  spetd LSc)rrt’sl)c)llciillg  to (Iisc.c)lltillllities  of the shape ( i.e..

tilt= Cot’fficients of tllc  serolld  fundamental forlll  ) is given  I)y

()T,, 1 f2
A,,~ = * —

P
(139)

wilere T,, is tl~e tellsioll  nornlal to  tilt’  front of tile  wave  of a (liscolltin~tity.

Hence, the failure of hyperhcdicity  en]erges  in the region where at least one of the

principal stresses is negative. Surh a failure manifwts itself ill  for]nation  of wrinkles. Tile

wrinkles can be observed, for instance, in the course of shearing, twisting, or bendil~g  of a

mmnhrane  (Fig. 6). If l~oth of the principal  s tresses are negative,  then even  the lines  of

wrinkles lose their smoothness, ant] a memljrane  can I)e rolled up in a point,

Recall that in contrast to one (Iilnensiollal  mntim~a where tl~e shape l>arameters  ( c~w-

vature and twist) ctin Le changed indepel]delltly  from tl]e elongations, in two dimensiol~al

continua there are some limitations imposed on the changes of the shape in the form of

the equations of compatili.lity  with th? changes of strains (the Gauss equatiom  (71) and

(72). AS foilows from Eq. (78) - (82), at the points of negative Gaussion  curvature, there

are two directions “of possible shape wave propagations (Fig. 78). At the point of zero

Gaussion  curvature, there is only me such a direciton  (Fig, 7c). .4t last, at the l)oil~ts  of

positive Gaussion  curvature, the silape discolltin~lities  are impossible, (Figure 7{1).

Thus the instability of the shape ddi!~e{l in terms of the coefficients of the second

fulidamental  form 1)1) is possible only if a conlpression  occurs in tilt?  (lirection  normal to

the asymptotic line of the surface at the correspon(lillg  point.

Slightly different, criteria of the Hadamard’s  il~stability can he obtained for liqt~id filllls

considered a.s t wo-dilnel:siollal  col~til]~la,  ( Zak, \l., 1985a).
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The Hadalnard’s  instal)ility  for tllr~>e-[lilllellsioll  comin~~a Wm s t u d i e d  by Zak,  \l.,

1982a.1].f. In this l)aper we will focus  our :~ttmtion  (N) tl~t~ i~~stahility  of a stwface  separating

iil~ elastic Im(ly al~(l i(!eal fluid, ( Fig. S).

.4s >llowll I)y Z:ik. \l., 19 S21~, tile rlmr:i(’tcristic s])t~tvl  o f  waves  trallsIx)rtill,q  clisrollti-

Illlities  of tilt’  >Illfat’e  sllalw  is t’x])resst’[1  as:
_.–

in which pl. ~,v and  T .1’ “1171 ~ l~~rartmze the demty, Yolmg’s  modules,  the Poisson’s rat io

and the stress ucmnal to the front of the lJrol)agatillg  wave of the elastic body,  al]cl p2 and

u cl]aracterize the clellsity  and tilt= velocity of the f luid.

T,,,, < P1P2 u’- E

(p] + p*)~ 2(1 +1/)
(141)

As aI]ax’tic~~lar(’asec)f  Eq,  (140), one  can arriveat  the Hadan]ard’s  iwstal)i]ityof  su r face

of tangential jump at velocity in an illviscid  fluid  (Fig, !3)

A= ; [(112 -
1

l@*/mp = = ;(U2 -  U,)(l +-i) (142)

This is a well-known result stating that tangential juml]s  of velocities in inviseicl fllli(ls

are always ~mstable, (In fluid mechanics this phenomenon is called Kelvix~-Hell~~l]c)ltz

illstal)ility).

4. Cumulative Effects

a. Degenerating Hyperbolic Equations

A cumulative effect  can be introduced as a l)re-instal)i]ity  state which is associated witl]

the change of type of governing eqtlatiolls  froln llyperl)olic  to parabolic  when at least OI1(J

of the characteristic speed  becomes zero, Actually this stock represents the boundary for

the Hadamard’s  instal)ility,  and del>el~dil]g  on  l~ow the motion approaches this boundary,

it may remain stable, or unstable. The sill]  plest  exalllple  of this tyl]e  of situation is tl~e

gove rn ing  eqllatioll  for a vertical i[~eally  flexiljle  i]lextellsil)le  string  with a free lower  ell(l

s~lsl~ended in a gravity field,  Fig, S. Projecting  tl~is eqttation  into the horizol~tal  direct ion.

one arrives at tile goverllixlg  eqllatio]]s  for sl]lal]  transverse Illotion  of the string:

i_12x T &x
~+;~=o (143)
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with the characteristic sptwxls:
r

(144)

Since the temsim of the string  T vanisi]  at tllt~ frm t~lld

T= Oat.Y=l (143)

11 of tile  string, tll{’ rlmracteristic  s])twcls 144 ) v.wlisll too at S = 1, allfl

therefore, Eq. ( 143) ~legent~ratc il~to  Ijar:il)f)lic type (it the very end of the string.

.4s a second example, consider a ol~e-(lilllellsiollal  mode]  of the shear wave prolmgatiol~

in a soil column of the height  H:

(146)

where  p is tile density, u is tile  llf)rizolltal  (Displacement, C7’ is the shear lno(lllles,  t is time,

and z is the vertical coordinate with the origin  at the sluface.

Ignoring the snlall  shear stresses at the surface, the shear modules can be taken ill  the

following form:

G =  o.5pgz  . (147)

Since

G= Oatx=O, (149)

Eq.

the

( 146) degenerates into parabolic type at the soil surface.

For the sake of concreteness, we will investigate the solution to Eq. (146) subject to

initial and bounclary conditions formulat d l~elow:

U(.r, o) =  +(x) (150)

Thust  it is zwmmed that the soil column is fixe(i at x = H and there is no shear stress at

the surface, i.e., at x = O.

One should notice that for simplicity ill  this ~nodel  all the damping aud creep effects

are ignored.
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t). Uniqueness

Let  US &’3SlUllE’

U’(.r,  t) all(l U“(x, t)

of the Solution

th:it  there exists  two sollltions  of

and let IIS exallline  the fliffermce:

u*(.r, t) =  U’(.r, i) –  u“(r,f) (131)

U“(1, o) = , ~(r, o)=o

h“
U“(H, t) =  o , ~(o, t)=o

F o r  tile  total  m]ergy,  one  gets:

J“{+c)’ + P(g)’} ,=odxE(t) = E(0) = ;

If the solution is sought  in the open interval

O<XSH

which does not include the surface point  z = O, then the Ilniqlleness

ol>vious.

However, this proof cannot he applied to the closed interval

()<x<H

which inclu(les the surface point z = O., Incleed,  in this

G =Oat&=O

(132)

(133)

(134)

= o (15G)

(136)

of t]le sol~ltic)ll  1s

(157)

case according to equation ( 148):

and any arbitrarily selected derivative Ou ● /A at x = O will satisfy the equality in Eq.

(155).

Thus, for the closed interval ( 157),  the uniqueness of the solution can be guaranteed

only in the claw of functions llavillg  contilluom  [derivative ~u* /&, otherwise the infinite

number  of different solutions can be oflere{l to satisfy eqtlatiolls  ( 146) with the conditions

(145) and (150) in the interval (157). As will  he shown in the following, the artificial math-

ematical restriction a]>ollt  t]~e colltil]ltity of tl]e (Derivative ~U ● /dx excllldes sllch  import alit

physical phenomena as cumulative effect.
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From the mathematical point of vit~w,  the sing~dality  at tile  point z = O iS asso(’i~te(l

with the fact  that  the original  t’quatioll  is Ilypt’rlmlic  in tile  open interval ( 136), I)ltt

(Iegen(>rates  i n t o  a I);iralxllic  t’q(mtioll  <it tl]c lmillt  r = 0. The l)liysical  I]leallillg  o f

this si]~gulaxity  will be discussed in the following sertioll.

c. S tab i l i t y  o f  t he  So lu t ion

Starting with the conditions ( 149), let us assulne  that

{

> 0  foxo<.r;  ,<.r<.r; <H
p(x)

= o forz < rl, alld~ > 12
(159)

1,)(.r)]o<*<}/  =  o (160)

cr(t)=o,  tzo (161)

i.e., we collsidt=r an initial dist urbame in a local interval [x;, .z~ ] ccmtainecl  within

interval [0, H].

From the differential equation of the characteristics, one finds the equatiol:s  of

charactmistics  passing thrmlgh  xl ancl x2:

the’

the

(162)

O<x,

Here x, ancl X2 are the coordinates of the

wave of derivatives .,d2u/0t2  and d2u/i3x2,

leading and trailing fronts of the (liscontillllity

wht%

.4 singular solution coincichmt  for both characteristics holds for

Iwcause

(163)
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Two cases may arise: (A) The iluprol){>r  integral

/

Io liljdt
—-———

* Jci( ),)//)
<  Xfor.J-o (164)

lliit  coinciclenrt~ of tilt’ clmra(’teristics  orc~lrs  for fillitt’

+wfoxt-+t*<m (163)

From the matl]ematiral  viewpoint this il]stal~ility  pmclicts  a clmlulaticm of the shear strain

energy  at tile  soi l  sllrface J = O . .4t t i l e  sallle  time, i t  illllstrates  tile  allll)igllity  in tile

solution which has lweI~ relllarkecl  ill t l:e illl’est igat ion of equation  ( 15).

(El ) If the impmper integral ( 164) [liverges  then the charartmist  ics ( 162) coincide at

t* –~ m an(l  the clml~ll:itiol]  effect  cIms Ilot occllr.

For the particular case of soil where  the shear Inodulus  is given  in the form ( 167) the

integral ( 164) converges and the time t ● {{dining  the moment of the formation of the shear

strain energy clmlulation  at the soil sllrface is

{-

~z;
t*=2———

9

In the general case when the shear modulus is a more complicated function of the elevatim.

tile  cumulative effect - occurs if

where <1, c2 are

verges.

G  >  <1X2+”

arbitrarily small positive constraints, became then the integral ( 164) con-

do Snap of a Whip

The results presented shove can l~e al~plied  to Eq. ( 163) [Inscribing transverse oscil-

lations of a vertical ideally flexil~le  iuextensihle

a g!-avity  field.

string with a free lower end suspended in

The tension of the stri:lg  d~w to gravity is given l~y tl]e followi]]g  equation

T=y(l–.z)
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where ~, I are the specific weight and lmgt h of the st rill,g.

Reft>rring to the fo rmula  (  144), ol~c> conclltdes that tilt’  l.llarartt’ristic  speed of tralls-

ver,sc clisl]lacellmlts  tell(ls  to Zercj a t  tile  fret’ t’1][1:

In ot]ler  wor(ls,  for the slllall

is of lly]mrbc)lic

(169)

there exists a ul~ique stable  iolution.

the sollltion  is not Ilniqlle  and tilt’re are unstable solutions if the improper integral

converges for x --t 1.

(169)

(170)

This result has a very clear physical interpretation: Sllplmse that an isolated trans-

verse wave of small anlplitmle  was  generated at the point of suspension ( Figm-e  51J).  The

speed of propagation of the leading front of the transverse wave will he smaller than the

spewl of the trailing front because the tensiol] decreases from the poill,t of suspension to

the free end (see equations (144) and ( 166). Hence, the length  of the above wave will be

decreasing  and in some cams (see (170)) will tel~d to zero. Then according to the law of

conservation of energy,  the specific kinetic energy  per unit of length will tend to infinity

producing a snap (snap of a whip).

It can be easily verified by substituting (166) in (170) that for the string in the gravity

fielcl  the integral (170) converges, i.e., the instability in the form of snap occurs.

The same type of instability as a result  of cumulation of m~ergy near the boundary of

the failllre of hyperbolicity  can exist in two. and tllree-clilllellsiollal  models in tlw domaim

where the inequalities (116), (11 7), ( 118) are close  enough to the corresponding equalities.

Zak, M. (1982  c).
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e . Failure of Lipschitz  Conclitiol]s

T h e  c u m u l a t i v e  t’ift~cts  art> [Lt.(.[Jll]lj:illi~,[l  l~y [i Vt’ly  illtelt~stillg  Il]atl]t’lll[iti{’ztl  lJhc-

nolntm(m:  failurt’  of Lil]scllitz  coll(litions”  for tllc  (lif~t’lclltial equati(ms  of (’llala[.tt’risti(’s:

d,~ —-——- .< == A(s)
(H —

tllc’11
1 13A2

lgjl =  Ijj-jjl-’-+  O:it.$’-+so.’

if

As followsflomR(]s.  (147), and(lm),

(171)

(In)

(173)

(174)

IImlce,  thel(wsof  tile Ill]iqlltmtvwof  tllcsoluti(m  to E(ls. (143) all~l (146) (’an Ijt,f(jrlnzilly

awxwiz ited with the failllrc of tllr I.ipsc]litz condition” at tllr ]x)illt  wllel”e  t]lr (S]ltil:i(.tc’l”isti(’s

coincifle.

11] ga]mal, fail~~rc  of tilt’  Li]~scllitz collclitiol]s”  ill clyl~all~ics  wits allalyzt’[1  l~y Zak.  M.

(19ss,1992,  1993a,l)).

5. Comments On Other Types of Instability Iu Dynamics

As follows fr(nn the previ(ms  stv’ti(mj tllt~ Ha(lwllard  Il]stal~ility  o c c u r s  in i{lcalizt,~l

nl(dt:ls  sllch  as e l a s t i c  lx)flics,  ox i(le:il  flllifls wllcre tl]t’ (vlergy  rlissil)ation  call  ljc ign(m~(l.

T i l e  m a i n  p r o p e r t y  o f  tl]is  type of illstaljility  is tl]at tht’ solt~tion  Ixv-oll]tw Illllx)llllcltcl

(lllri]lg  a  fillitt?  till]t, illttmml  (t <  m). Hc)wrvt’r, t i l t ’ l t ’  art’ really other typrs of illstal~il-

i t y  (rslxv-ially,  ill flllicl  {ly]lalllirs)  Jvlli(.11  also  ltIafls  to Illllilllitt’(1  cltw’rt’ast’  of tilt’  sc:ilt’  of

motion, although they art’ not so “ strol]g’” as the Hadamard  instability: the solution  lw-

colllt’s  Ulll)om(lwl only at i + m. Sil]ct~ all of this Ly:tl)llx~()\’-ty1~c~  of instai~ilitics arc wt’11

represtmtcd in litt~r:tturt’, wf’ \vill give  lltyc  olll~ a l)lit’f flt>scriljtion  of thtvn.



a. Thermal  Instabi l i ty  arises  when a fluid  is heatcfl  froln  I)c1ow. WhcIl the tmn-

]wraturt=  difference across the fluid layer is great cllot~gll,  the stability effects  of visccjsity

all(l t i l t ’mlal  conductivi ty are ovm-onw l~y tilt’  Clt’stiiljilizillg  I}lloyallcy, and the illsta}~ility

occllrs  in tile form of a tllerlllal  convection.

b. Centrificial  Instabi l i ty  occ~m ill a fllli(l  owil+g  to the CIyllaxlliral  effects of rotation

or o f  s t r eaml ine  c~lrvat~uc.  For illstal]ce, a.~ sllowll  l~y Rayleigll, all i]~vicicl  flow Iwtwwm

two  rotating  ccmxial cyl inders  is  ~ll]stal~lc if tllr m]gular  I]lonwl]tum  lr~fl I sllolllcl  decrease

til]ywl]tv.e  illsi(le  t h e  il]ternal rl < r < TG2, wl]cre  Cl is tile ang(llar  velocity  of rotation o f

the fluid,  r] , ancl rz are tllc  rwlii of tile coaxial rylinders,

I t  can lw ({tv~]o]]strated  t h a t  in gmlt~ral,  cex]trificial  illstaljility  arme f r o m  a[lvexse

flistriblltiol]s  of angular molnt’lltlllll.

Rayleigl]-Taylor  instability derives from the character of the txluilil)ri[ul~ of an il~com-

]Jressil>le  heavy fluid of variable (Iel]sity. For instance, it is shown, that i]] the case of

variablr density of exponential distribution

P = Po ~p’

where z is the vtv-tics] coordinate, the equil

, [) = Const (173)

Ijriuul  is unstable if

(176)/J>o

i.e., if the heavier layers are al~ove  the. lighter layers,

c. Reynolds Instability results from a dishalance  between the inertial and viscus

forces. It occurs when the Reynolds nmnher  (R) exceeds cert ail~ critical values which

deptvld  U]JOX]  the type  o f  a  f low allcl its Imundary  cm~ditions.  For a ])articular  case  of

inviseid  shear flow (R ~ cm) with parallel streamlines, Rayleigh  has shown that a necessary

condition for instability is that the basic  velocity profile should have an inflection print.
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III.

1.

a .

STABILIZATION PRINCIPLE

Instability AS Inconsistency Between Mocieis  and Reality

General Remarks

I t  has been ,delnmlstrattd  i n  t h e  ]Jr(~violls  sertion  t h a t  tllt~rt’ are solne  (lolllaills  of

dyllan~ical  I)arallwters  where tile  nmticm  c:illll{)t  Ije ]Jrtvlicte[l  Im.allse of install  ility  of  t i le

soll~tion,s  to tile  corresl)oIl(ling  gover]illg  e q u a t i o n s . H o w  call it l)t~ illtt~rprettd’?  Does it

mean that  the Ntwton’s  laws are not adequ:ite ‘?  o r  i s  tl]ere  solllt’tllillg  Jvrwlqg $vith o~lr

m a t h e m a t i c a l  mmlels? Iil or(ler to answer tl:ese  qllmtiolls, we will fliscllss  sonle  general

a.s]wcts of the concept  of illstal)ility, an(l  ill  l)articul:ir,  a dt’,gree to which  it is an invariant

of motion.  We will demonstrate that instaljility  is a!l attriljute  of a mathelnatical  mode l

rather than physical pllellolllelloll, that it clt’lwll[ls  Illmll tile frallle of reference, upon tile

clam of functions in which the motion is (Iescribed,  an[l  upon  the way  in whit-h the distances

betweel] the I)asic and perturlxxl  sollltiol~s is tlefille(l.

b . I n s t a b i l i t y  D e p e n d e n c e  U p o n  M e t r i c s  o f  C o n f i g u r a t i o n  S p a c e

Let us turn to orbital instal>ility  discussed in the Sect ion 2.2. Tile l]letric of  con-

figuration space where the fixlite-tlegree-of-freeflc)lll  dynamical system with N generalized

coordinates q’(i  = 1, 20. . N) is represented I>y a unit-mass particle, was defined by Eqs.

(27) and (28). Now there are at lm.st  two possible ways to (iefil~e the rlistance  between the

basic anti distt~rbed  trajectories. Following Synge, ( 1926), we will consider tile distance in

kinematical and in kinematico-statistic~  sense. In the first case tile  corresponding Imints

on the trajectories are those for which tinle t has the sallle value. In t]le  second case tile

correspondence between points on the basic trajectc)ry  C and a (listurl)e[i  trajectory C’*

is establisiwd by the conciition that P (a point on C) shouki  bt= the foot of the geodesic

perpenciiculm  let fail from P* (a l~oint on C*) on C, i.e., here every point of the disturbed

curve  is acijacent to the undisturbed cllrve  ( regarciless of the position of the moving par-

ticle at the instant t). As shown by Syllge,  botl~ [Iefillitioll  of stability are invariant with

resp&t to ccxmlinate  t r ans fo rmat ion ,  and  ill  l}otll cases the s tabi l i ty  implies  that  the

corresponciing  (Iista,nc.e  between t}le  curves C a)lcl C* relnains  permanently small.

It is obviotw  that stability n the kinematical sense lnplies stal~ility  in the kinematico-
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stat ical  seine,  hut tile convmse  is not trllc. I1ldeed,  romsider  the ]l~otion of a particl~’ o f

{llli  t mass on a plant= l~nder the illfiumce of a force  system  deril-dhle  from a lmtel~t ial:

n = –J- + ;g~. (177)

lP -t- .-!t  + 1?x=–~

y=csill(t+n)

wl]ere  .4, B, C an(l  D are comtants  of integration.

Lt~t the undistm-lxwl  motim be:

y=()

(17s)

(179)

1s0)

1s1)

Tile lnotiol~ is cltwrly  ~ulst:il~le  in the  killmnatical  sel~se. However ,  fmll~ tl~t~ viewpoixlt  of

stability ill the kinematic o-statical sense, the distance between correspondill,q  pc)ints  is:

PP*=y=CSin(t+D) (1s2)

remains permanently small if C is small. Hence, there is stal)ility  in the kinexllatico-  statical

sense.

Thus, the same motion can be stable in one sense, and unstable in another, deptmding

IIpon  the. way in which the distance between the trajectories is defined.

It should be noticed that in both cases,  the metric of configuration space was the salne

(see Eqs. (27) and (28).  However, as shown by Synge,  1926,

can introduce a configuration space with another metric.

$’ltlll = (E -  n)~,,,,,

for conservative systems. one

(183)

w~~e~e  ~ttltt  a~~ q~ress~[l I)Y h. (27)t al~~l E is tl~~ total  energy.
#

The system of n]otion  trajectories here consists  of all the geodesics of the manifold.

Tile correspondence between l~oi]]ts  on  the trajectories is fixed  by the condition that the

arc O* P* slloul(l  be eqllal to tile  arc, op, w]lere  O and 0“ are arbitrarily selected origil~s

on the basic  trajectory and any (Iisturl]ed  one, respectively,
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As s h o w n  by Syngt=, the prol>h>m of stal)ility  here (which  is called s t ab i l i t y  i n  the
. .

action sense) is that of the convergence of geodesics 1:1 Rlenmnltian  space. If two geo[lesics

pass through adjacent points in nearly l)arallt~l  [Iim”ticms, the clistanre  between points cm

the geodesics equidistant from tht’ rcsIwcti\’e  initial  points is eitl~er permanently small or

n o t .  I f  Ilot.  there is il]stal)ility.  It a])]wars  t h a t  stai)ility  isl tl]t~ zictiol~ sel]sr  Inay  not he

t’qltivaleut  to stal)ility  ill tile  killt’lllat  it’c)-st:itit’:il  st’llse for {Iistallt>t’s  wl~ich rllallge t)lt’ tot:il

ellt’rgy  E.

Turning to the exalnple,  Eq. ( 177), lt~t us take the initial I)oil]t  0 at the origin  of

roordiuates  and the il]itial lJoil]t  0’ 01] the y axis. Then tl]e [list~lrl~allce l~eing infinitesilld,

the (action) clistance Iwtween corres]mxlrling  lloil]ts  is:

p“ = (E–fl)l/2  y == 2-’/2(t +  l)~sin(t  +  ~) (1s4)

Hence, the motion is unstable in the action sel]se.

c. I n s t a b i l i t y  D e p e n d e n c e  U p o n  t h e  F r a m e  o f  R e f e r e n c e

Dyuanlical  instal>ility  delm~ds  Imt mlly  u p o n  the Il:etric ix] w h i c h  t h e  (Iistallct’s  lw-

twem trajectories are defined, l~llt  also Il]]on the frame of reference in which tl]e ll]otiol~  is

(Iescrilwcl.  SUch a dependence was  alrea[ly  noticed above (see Eqs. (55)). Ill this section

we will introduce and discuw an example which illustrates the (lepelldence  c)f criteria of

hydrodynamics stability and the onset of turlmlence  upon the frame of reference.

The linear theory of hyclrodynaxnii stability is based  upon E~llerian  rel)reselltatioll  of

fluid motions in w~tich  the frame of reference is chosen a prior:. Strictly  speaking, such a

representation provides criteria of stability for the velocity fieltl rather tlla;l the flllid n]o-

tion. The difference between these two types of st al)ility  was illustrated hy Arnold ( 1988),

who introduced f lows with stal)le  velocity fields  and unstable trajectories ( Lagrangian

turbulence).  If  the classical (Eulerian)  t,url)ulence  is associated with the imtahility  of

s t r e a m l i n e s  then it is re~sonal>Ie  to stlldy  this instal]ility  in a strealnline  frame of refer-

ence in which streamlines form a family  of illitia.lly  unknown  Eulerian  coordinates, while

t h e  renlaining  t w o  Lagra]lgian  coordi)lates  are fo[lll(]  from t]le colnpatil>ility con(litiol]s.

Such a frame of reference is completely (lefille[l by the motion, and therefore, it contains a

minimlm  of arbitrarily cho,sen ]Iara]neters.
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Fimt of all, we will show that criteria of stability in this frame of referellce (lo Ilot

Ilccessarily coincide Witil tile classical criteria Which are clerivt’d  frol]] t lle c)rr-  Solllllwrfel(l

cqtlation. For this l~[lr]~osel  we will illtro(l~lct~  a sn]all  {list~lrlml]ct~  vt~locity  field  for i]lcOlx]-

]]ressil~le  p lane  flow in cartesian  coorrlinattw  x. y:

where  the l>ril]lt= denotes cliffereutiatiol~,

y)e i(ctr-Jf) a !j =  Collst,, (1s3)

Tile angle O l)etwtwl~  streallllilles  and tile x-{{irtx-tion  is

(1s6)

in which V(y) is the velocity profile of the Imsic flow. The orthogonal strealnli]]e  roorflil~ates

<,< are found from the system:

w h e r e  H 1 a n d  H2 are the Lame mt+ficients  Mined I)y the conll~atilJility  ronditiol~s

(tY.r/a@( = iYx/a@{  etc. )

.4s follows from Eqs. (186 - 189), the coordinate transformation

z= ~((!(!~)! !/= Y(f*(,  ~)

in general will clepend  on time. Hence,  for the stream function one obtains

i.e.
r,y=const

#  g-

(1ss)

(1s9)

(190)

(1!31)

(192)

In  other words, the stability criteria ill frames x, y and (,< are not necessarily the same.
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This prel iminary conclusion  pI’OVic]t’S  Il]otivation to analyze  criteria of Ilyfimtly]]alllic

stal>ility  in streamline coorclinatt=s.

Confining our investigation to a I)lal]e illcmllpressil)le  illvisci(l  flow OIIe (It’rives tllv

llloluellt~lm  eqltations  in strealnline  rmrdimtes  f r o m  tl]e Lagrwlge  ml~~atioll:

(! 01(1 13U, 1 0]) (3W 1 ap
— .  — . _  _= . _ . _  _= _ _ _  .

dt q (9( p (3( ‘ 0< p (9( ‘

in wllicll tile  kinetic t’llt~rgy

~V = !}{;<2
~ (194)

an(l  the velocity

V== V,= H,<, V2=H2{=0

w h i l e  l) and p axe ]Iress[lre  allcl clel}sity, reslmctively.

The monwntmll  eqlmtions  read

(1!)5)

V2 (9H1 1 ap_— —=  -.
H] H2  O( pa(’

(196)

The continuity equation follows from the condition

8
div  V =

0 ’ ‘“e’ m ‘vH * ) = 0 (197)

Equations (187)-( 189)  are completed by the compatibility (Lame’s) equation

$(%9 + w%’)= 0 (198)

Linearizing these equations with respect to an unpertm-}xd  shear flow:

v = t’(lJ) (199)

and taking into accollllt that for this flOW t]le streal~llille  coord ina tes  coinci[le  with the

cartesian coordinates:

43



then, as follows from t=q~lations  (’202) allcl  ( 203),

(~ol)

(202)

(203)

(204)

Substituting the values (204) and (205) into equation

eqllatioxl  for ~(<):

–f#(/)((J  e](ot-d~). (205)

(201) one arrives at the goverlli,l<

Q“ – 7
w“(() ;9

V(()[t’(() - .] 4’ - ’24 = 0’ c = i ‘

which is different fronl the orr-Sonmwrfelcl  equation.

If the lm.sic flow P(y) is hounded by rigid walls:

. .
Y =Y17y==y2, (207)

then the streamlines at q = y] and ~ = y2 must coincide with these  walls,  i.e.

ar 1  OHl-——
q= H2 0< 11

=Oaty=ylandy=

in which T and n are the Ilxlit  tal]gellt  and the unit normal vectors

Y2 (~os)

to the strezulllines.

Hence
t2H1
3(-=0’ aty=y’a]’’iy=yz

(209)
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and therefore, with rt’ferellres  to t’quatio]ls  (?05),

0((1 = Yl) ‘- 0. ~’((2  = Yl) = 0. (~lo)

Tl]ese eq~lations  exl~ress tl~e Im(lllclary  rollclitious  for eqt~aticms ( ZOG),

Inorderto  showt h a t  tl~estal~ility c`xiteriai  ]lstrcall]lille{  .oorclil]ates  areclifferent froll~

those given hy the Orr-Son:lllelfel{l  eqllations  let 11s select  a s]xvial  velmity  profile ~-(y)

sIIc]l t h a t  tl]e coeficiel]t  of Q’ ill eqllatioll  (206)  rt’clllces  t o  a  c’c)llst:ilit.  (.)l}vio[isly,  SIIC]I a

l)rofile  Ixl[lst  sat isfy tl]e first-orclt~r CIifferelltial  t’qllation

v’— —  - -  = y == Collst. Img  = O ;
F’(V’ – C)

(211)

and consequently

</ = c
1 – ~~7Y ‘

(~1~)

wl)ile  equations (Z06)  for this profile Ie[lures to

@“ – C:70’ – fi2d  = o. (213)

Its general solution is

d =  C, exp(~ly)  +  Cl exp(~zy)  , (214)

where

(213)

.$u]~stitution  of tl~e houmlary  conditions (210) into equation (214) leads to a system  of

homogeneous equations:

Cl exp(~l  y~ ) + CQ exp(~zyl = O , C, exp(~ly~)  + C* exp(~zyz)  = O , (216)

and for a non-trival solution

dets
(

exp(~] y, ) exp(AQyl )
exp(~l  y2 ) exp(A2y2) )

=  exp(A1yl  +  A2y2) –  exp(Aly2  + A2yl)  =  O ,  (Z17)

i.e., AI = A2; or, with reference to equation (215),

c=*22n/y=+coi. (218)
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Since a and y are real, c is imaginary, and therefore. so]~ltic)l]s  ( 205) are Ilmstal)le fOr any

Y1 and yz.

Now we wi l l  sl)ow that  tile C)xr-Solllll]t’lfel(l equatiol]  predirts  stal)ility  for tile sallle

]Jrofile. Il]cleerl,  slll~stitllting  c floll]  eqllation  ( 21S ) into eqlwtioll  ( 217)  al~[l se]>aratil]g  t}]r

real part of the velocity profile,  (me ol)taim

Jleti  =  + mtan (2 cry) . ,~]~)

T h i s  ]~rofile l~as ol~ly ol]e i]lflcctio]]  Imi:lt  (at y = r/ (4 n )). Collseqt~e~ltly, accorriil~g  t o

the point-of- inflect ion criteriol~  ~~roved I)y Tollmien, any ])rofile of tile  form ( 21!)) ~vllicl~

does incl~lde tilt= inflection lmil]t,  i.e.

is stable.

It is importaut  to emphasize that these two different results regarding the

locity  profile are not mutually exclusive: the first is rt=lated  to the stability of

(220)

same ve-

tht’ flllirl

motion referred to streamline coordinates, while the second  is related to the stal>ility  of

the velocity field.  But which one of these  approaches is actually related to the onset of

turl]~dence’?  The clynamics of fluid Inotion,  al~d in partic~llar,  tl]e stal]ility  of streanllilles,

is directly related to tile onset of tllrl)lllence  inasmuch a.s the stal~ility  of particle trajec-

tories  is directly relatecl to the onset of Lagrangian  turbulence.  At the same tilne, the

stability of velocity fields  is indirectly related to the onset of ttlr})~lle~lce.  That is wl]y tl~e

linearized version of the classical theory of stability cannot explain the instability of plane

Couette flows. In this connection it is worth noting  that hy an appropriate selection of

~, VI and YQ m equations (219) and (2’20), the velocity profile, Eq. (219), can be made as

close  as necesmry  to a straight lix]e,  therel)y  predicting the illstal~ility  of ally  flow wllicl] is

arbitrarily close  to the Couette  flow.

d . Instability Dependence Upon the Class of Functions

The properties of solutions to differential equations such M existence, uniqueness

and stabi l i ty,  have a Inat]lelllatical  lllea]]il~g  o1lly  if tl]ey  are referrecl  to a certain class

of functions. For instance, as shown al~ove ill  Eqs. (143) ax~d ( 146), we have a unique

s t a b l e  soll~tioll  ill all opel]  il~terval  ( 156) i l l  t~le CIMS of l]oull[le[l f~lllctions,  wl]ile ill  a
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C1OSCCI  interval, ( 157), the

rollccrllillg  the ]Iroperties

to a rrrtain order) of the

restrictions illlposed  ulmn

~~niquent’ss  al]d stal)ility  are l~ot guar{mteed.  \lost  of tl~e rt’suits

of solutions to ~liffermtiai  eq~l:itioms  require (lifferellti  al~ility  ( ~11}

funct ions (It>srriljill,g  tile soi[ltiolls. HOWeI~eI,  tile ~l~atllelllatical

the class of flulctiolls ~vllicll  qllaralltee  tl]e t’xistellt’e of a~] Illli(llle

all(l stal]ltj  sol[~tioll. (lo Ilot l~ecessarily  lea(l to tile  Iwst  It’l)rest’lltatioll  of the t’c)rrt~s])ollclillq

])l]ysical  ]jl]t~l]f)ll]elloll. IIl~lee[l, t u r n i n g  agai~~ to Eqs. ( 143) and ( 145), O1lC I]otices  tll;it

tile Illliqlle  a~ld stable solution ( 156) cloes  Ilot clescrille  a c~lll]llll~latiol)  effect  ( a ~:la]~ of a

wllil) ) wllicl] is well pronounced ill  experimel]ts. .4t tile  sallle  time, an Illlstal)le  solution”  ill a

closed illter~d ( 157) gives a qualitative dtvx-ription  of this effect. Hexlm, pm-e matllrlllaticd

restrictions ill]lmsed  Lll)oIl  the sollltions  are not always consistent with tile  l)llysical  natllre

of  ll]otiol]s.  In tl~is  col~text,  the long-t  crlll il]stability  ill  t’]assical  f{yxlall~ics  (iiscl~sse(]  ill t]le

Section II, can lw interpreted as a discrepancy Iwtwetm  tl~ese l~]atl~ml~atical  restrictiol~s

and IJl]ysical reality. T h i s  means t h a t  l~ll])reciictal~ility in classical  ~lynall~ies  is a l~rice

paid for mathematical “convenience” in dealing with dynamical models. Tl]erefore,  the

concept of lllllJre[lic’tal}ility  in flylla:nics sholll[l  l)e pl~t a.s tlxl]>re[lictal]  ility  in  a  se lec ted

class  of functions, or in a selecte[l  metrics of configuration space, or in a selected  frame of

reference.

Now  the followi~lg l~rol)lelll can be posed.  H o w  to selm-t an al)propriate  mathem:itit-al

representation of a physical phenomena? The answer to this question  will lw {list-~lsw[l

l)elow.

2. Dynamics In Fast Oscillating Frame of Reference

As shown in the previous sections, the instability, and therefore, the occllrrellce of

chaos or turbulence : in description of Illechanical  nlotions meal]s only that tl]ese nlotiolls

can:)ot I)e prol~rly [Iescril]ed  l]y sl~~ootl~  f~lllct ions if the scale of ol~servat  ions is limited.

These argmnent~ can he linked to Gode]’s  incoln])leteness  theorem ( 1931), ancl the Richard-

son’s ( 1968) proof that the theory of elementary functions in classical  analysis is undecid-

al~le.

But since  instability is

l)osed:  is it possible to find

not an invariant of motions, the following question can Iw

such a new (enlarged) class of functions, or a new metric of

configllration  space, or a

s{ich a  l>ossil>ility  would

new frame of reference in order  to eliminate instability’? .\ctllally

lead to flifferent  representative l)arameters  descril>ing  the same
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motion in such a way  that small  Iulct’rtailltit’s  in external forces  cause small changes of these

I>aral]leters. F o r  exanll]le,  in tllrl)ttlellt m](l rhaotic ]uotimls,  mean velocities, Rt=yuolds

St X’esses, ancl lmwcr  slwctra, Iel)rt’st’llt “stal)le” lxwal:wters. althol@ classical governing

t’qllations  lleitl:t’r  are exl~liritly  e.x])resst’cl  via  tlles(’  l)tiralllt~ters. llc)I IIlliqllely  rlefill~  tllelll.

The first stt’p toward the elllargingof  tlw  class of f~~l~ctiol~sfor  modelil~g  t~ml~~lltmce

was ma[le I)y ( ) . ’  Revllol(ls  (1 S!35)  W1)O cltv’oll]lmse{l  tl~e vt~l(~city  field  il~to tl~e ll~ean al~(l

]Jlllsatillg  colll]~ollt’l]ts, and actua]ly illtrorluced  a  Ixlllltivallle(l  Y’t’ltwity  fielcl,  Howevt’r.

t h i s  rlecolll]msitiol~  I)rollgllt  new  Illlkllowlls  Witllc)llt  a(l[litiollal  g(wexltillg  eqllatio~ls,  all(l

tl]at created  a “closure” pkol)lem. Ill 19S6 Z a k  l~as sI1ow1]  t ha t  the Reyl]c)lds eqllat  ions

ran he o}]tail]e~l  I]y referril]g  the 3Javier-Stokes  eq~lations  to a rapidly oscillating frall]e  of

reference.  while the Reynol[ls  stresses  rtq)resent the contribution of inertia forces. From

this viewpoint the “closure” has the saint> status as “l~rcx~f’  of Eucli(l’s  parallel postulate,

since  the motion  of the frame of refmence can be chosen  arl~itrarily.  In  o the r  wor~ls, t h e

“closllre”  of Reynolds equations represents a case of ~l]ldeci(lal]ility  in cla.ssicai  lnechanim.

However,  lm.sed upon the interpretation of the Reynolds stresses as inertia  forces, it is

reasonable to choose the motiou of the frame of reference such that the inertia forms,

elilllinate  tl~e origix]al  illsta}~ility. Ill o t h e r  words,  t h e  elllargefl  rl~w of fllllctiolls  s11oIIJ(I

be selected such that tile solution of the original problem in that class  of functions will

I]ot possess an expcmential  sensitivity to changes in initial collclitions.  This stal)ilizatioll

principle has hen formulated and ap~)lied  to chaotic and t~lrhlllent  I]lotiol]s  by Zak ( 1982,

1985a,  1986a,b,  1990). As shown there, the motions which are chaotic (or turhdtmt)  in

t lle original frame of reference can be represent ecl as a sum of the “mean”  motion and

rapid fluctuatitins,  while. both components are uniquely defined. It is worth emphasizing

that the amplitude of velocity fluctllation  is I]roportional  to tile  degree of the original
.

instability, and therefore, the rapid fluctuations can l~e associated with tl]e Ineasllre  of

the uncertainty in the description of motion. It should he noticed that both “mean”  and

“fluctuation” components representing the originally chaotic motion are stable, i.e., they

me not sensitive to changes of initial conditions, and are fully reproducible.

‘Let us refer the original equation to motion of a l~on-ilwrtial  frame of reference which

rapidly oscillate with respect to the original inertial fralne of reference. Then the absolute

v e l o c i t y  q can lW decoll~posec~  il~to  t]~e r e l a t i v e  velocity  ~1 al]d  the tra]]s]~ort  v e l o c i t y
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i2 = 2q2(o):

/j= il + ~iz(o) (’0s L&J + .X1 (221)

while ~1 and ~~ are “’slow” functions of timt’ ill tht’ sense that

1
w’ >> -T (m)

Ill other WOMIS,  a f:ist f)srillatillg  v e l o c i t y  I]racticaily  (lees I]ot rlxulge  tilt’  rlisl)l~icen]ellts.

into the follc)wing form:

.—
T, = +3 + I!);,),~J~’”  , + (jl~J~IIJ ,2 = 1,2, ,.. ?1 (226)

where ii and x’ z) are means  ancl [lotll~le-correlations of x’ as random variables, reslwc-

tively,

As will be showl; he]ow, the transition frcm (225) to (226)  is identical to tl]e Reynol~\s

trallsforxnation:  i.e., being  app]iecl  to the ?Javier-Stokes  eq~~atiol]s, it leads to the Rey]lolds

equations, and therefore, the ltwt ter:ns  ill  (226) (wllicll  is a contribtltion  of inertial forces

due  to  fast osci]]atiol~  of tile frallle  of reference) can be iclel~tifiecl  w i t h  t h e  R e y n o l d s

stresses. From a mathematical viewpoint, this transformation is interpretable as enlarging

the rl.&s  of smooth  f~mctions  to Inultivalllecl  ones. hldeecl,  as follows from (222), for any

ar}>itrarily  small interval  At, t]lere always exists  Sllc]l  a large freqllellcy  w > At/2m t h a t

within  this interwsl the velocity q rllns throllgll  all its values, an(l  actually the velocity field

becomes multivallles.
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C l e a r l y  EqS. (226) res{~It fmn] tht~ till]t~-avel:igi~]g. I n  case  of applic{tl)ility  of the

ergodic  hypothesis, t lle sallle  t’qltatious  r a n  Ile ol)t aintwl fro:]l t lle e!lsell]ljle-  averaging.

However,  formally the averaging promlim  ran lw illtrodttced  axiolllaticiilly  Imsed  {~]x)n

tl]e ReyIlolds conclitiol]s:

—.. -
a-th=?i+i!  F==kti,  Lk, (k=rollst.

z ail , ~-
Z=Z ==?iiJ

T h i s  leacls to tl]e idel~tity:

which q’, -and q’ are the gem’ralized  coordinates ancl velocities res]m-tively,  and illtrofl~lre

an 1~-dimensiollal  (abstract) sl~ace with the metric:

Theu the equations of motion

q’ = q’(t)

satisfy the following differential equations:

~“ +  F;yqfiqy  = Q“ ,

where Q* is the force vector, I’~y are the Christoffel symbols:

[

da,k
r’sk =  ;d’ % +  aakp _  _ 1 { O  ifo #y,

Oqk aq’ ~qJJ ‘ a
“%J$7 = 6; =

1  ifn=y.
(231)

Equajion  (230) can he interprete(~  ~~ a I)arallletrical  eqtlatioxl  of tile trajectory C of a

representing point M with the contravariant  coordinates qa. The unit  tangent vector

T = vo to this trajectory is defined as:

dq” 1T“=l/;=— — lJJ ,/; = 1,
ds =  ~ ‘“ ‘  “’’””0



d 1/; C@— -t riqlj;~ = –  \pI/; _l +- t}l+w;,+l ,
(1.s .’

Tl~e ]Jrincipal  norl]lal  r/l i s  (.ol)l:illar  witl~  tile  tm:gellt  vO ziIlcl tilt’  force  vector  Q, Tilt’

rest  muwatures  as well ELS tile  (Iirectiolls  of tllc  rest Ilorll]als  are [lt’fil~t’cl  I)y Eq. ( 273),  Fig.

9.

For simplicity we will confine  mmelvcs  I)y a partic~~lm  case when

~:k == (’onst (234)

Sul]stitllting  the decomlmsition  ( 221)  into Eqs. (230), one  obtains:

Here the terms

Q;, = –  %f?(o)qo) (~3~)

represent the inertia forces  caused IJy the tralls]mrt  motion of the fralne of reference.

.+llplying  the velocity decoml>osition  silnilar  to (221):

v = v-l-x)

to the momentum equation for a continuum

[*

Coswt,  @ + m

in Eulerian  repre.smtation:

( — +Vvv
p at ) = V*U

where a is tile stress tensor, one ol)tains:

(237)

(238)

( in
Pa + Vvv

)
=vo(f7 +5)

in which 5 is the Reynolds stress tensor  with tile  components:

——
6,1 = – pc, cl
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,,

In terms of the Reynolds equations. V allcl  + represent tlie  mean velocity and the amplitude

of fast velocity  flut’tllations.  respectively<

The most significant ad~:intage  of the Rymol{ls-ty])e  t,q~~atio:]s ( 226),  (235)  and (239 )
——

i s  tl]at t h e y  :i:t’  t’x])lif-itly  (’x])rt’sst’cl  via tilt’  l)lly~ically  It’])1’[)clll(’i})le  l)[iral]lt~ters 1’, .r’ X)

whic]l clescri]x>,  for imstanct’,  a Illt’:ill  vt>]ocity I)rofile ill tl~r]~~llt’~lt  I]lotiol]s$  or a lN)wt’r slx’r -

tr~un  of chaotic attractors. Howt>vm.  as a ]Jrice for that, tht>se  equations reql~ire  a clos~me

since  tl~e nlillll>er  o f  unknowns  ill there is larger tllall tile  Illllllber  o f  eqtlatiol]s.  .+ctllally

the closure proldem has existwl  for almost a lm~(lred  yeat>  sil~ce  the ReyncJlc\s  eq~latiol~s

were  rlerived.  Ill the l~ext s e c t i o n s ,  ha,ses ~I1)on tile stal)ilization  lJrillciple  illtrocl~lce~l I)y

Zak, il. (1985a, 1986a,l],  1990),  this problem will lw disclwsed.

3. Stabilization Principle and the Closure Problem

a. General Remarks

Revisiting the dynamical systems (226),  (235),  and (239) which describe motions in

the class of multivalued  fmctims, one notes that these systems are not rcmplete  in tile

sense tl~at the number of unkl~c)wns is larger than tl]e number of equations. In l)artic~~lar,

the vector which expresses the bulk rolltrib~ltion  of the “micro-scale” Inotions  into the

averaged motion, rq>resents  excessive l~l~knowns. Such an incompleteness creates a closure

problem. This problem first was identified in connection to the Reynolcls  equations de-

scribing turbulent motions, The problem of turbulence arose almost a hundred years ago

as a result of c{iscrepancy  between theoretical fluid mechanics and experiments. However,

in spite of considerable research activity, there is no general approach to prediction of t lw-

I}ulenm  lxwe,cl upo~ theoretical models. Most of the efforts were directed toward finding

a “ l]hysical” law which would couple  the Reynolds stresses with tl]e rate-of-strain of t l~e

average motion, and thereby, would represent a(l(litional  equations required for the closure

of the Reynolds equations. For instance, Prandtl  il]tro(luced  the mixing length  assumption

for the t we-dimensional version of the Reynolds equation:

au au 1 ~T
~+u~+L)—=– —, T=

ay
–pu, vr ,

p ay



Here u, U , u, and u,

roor(lil~at,es  x and y,

is a so-railed mixing

are the mean all(l fluctuatim  velocity projections on the cartesian

rmpertively,  T is the shear con]pment  of the Reynolds stress, and (’

length ~vhich  is slll)pmt’[1  to Iw fomlcl from t’xlx’rimmts.

By exl>loitin,g  the (l(JsIII(’  ( 241 ),  Prall{ltl  solved  stnwa

tl]eory of tllrl~llltvlrt~: llr follll{l  a Illr:ill vtl{wity  ]~rofile o f

flow in a l)ilw. he desrril~wl  tl]e sl]l(x)thi]]g  out of veloci ty

his solutiom  were  sllfficiently  clme to experilnental  resldts.

l)r(]l)lt~lll.s Of t~~ro-(iilllt’llsioll:il

all  zixi-sylx]xll(’tri(’ztl  tLlrlJlllt’Ilt

Iiscolltilltlity,  etr..  while :ill of

However, tile same rloslm (241) failed to I)rovide  satisfactory solutioms  ill  mal~y  other

rases, which means t l~at t lle rloslm  (241 ) (.’:i]] I]ot IM considered as a “physical” ltiw. B\lt

(low  any “physical” law of this tylx’ (’241 ) t’xist, in principle’? .Alld is stlch  a law neressary

for the closure”! In[leed, as shown in the ~)revious sectiou, the Reynolds stresses can Iw

il]tt=rl)retecl EM a rolltxil}utioll  of tile  inertia forres  of a ral~iflly  oscillating fraxlle of reference.

wl~ile this frall]e  of reference ral] l~e rll(wml [arbitrarily! However, s~lcl] an il~terl)retation

leads to another question: is it possil)le  tc) find  such a frame of reference which  l~rovides

the “best” representation of the motion”? Obviously, in this representation the motion

must be stable, and therefore, the restoration of stability of the originally unstal)le Inotiol)

can be cho.sell  as the nlain  (.riterioll  for selection of tile fral:le of reference, and therefore,

of the Reynolds stresses. From the x~]atl~en]atical  viewpoint, it meam that if tl]e original

motion is unstable in tile clam of smooth functions, tl]is instability can be elilnillaterl  I)y

enlarging the class of functions. From that viewpoint, the Prandtl’s  closure (241) cm be

treated M a feedback which stabilizes an originally unstable laminar flow, Indeed, turning,

for instance, to a plane Poisson flow with the parabolic velocity profile, one arrives to its

instability if the Reynolds number is larger than RCr s 5772. Experiments show that a

new steady turbulent profile is not parabolic any more: it is very flat near the center and is

very steep near the walls. The same profile follows from the Prandtl solution based upon

the closure (241). But since this profile can be experime:ltally observed, it mmt be stable,

and this stabilization is carried out by the “feedback” (241).

b. Formulation of the Stabilization Principle

Based upon remarks made in the previous section, we will now formulate the following

stabilization princil)le,  Consider a {lynan~ical  n]odel  which in some domain of its param-

eters becomes uxlstal~le  in tile class of <lifferelltial~le  fllnctions, i.e., its instability leads to
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an un})ounded  growth of ignorable  variables. .4s noticed earlier, this means that the corre-

spol~dil]g  physical phenomena cannot  Iw :i(lequately  de.scril)ed  iu the class  of (Iifferelltial)le

f~l]]ctic)l]s,  and the original model must  be modified. The n~mlificatiou  of the Inmlel  sho~dci

lw l~ase(l  u]xm  the enlarging the (nigillal  rlass of functions ill such a way that tile illstalJil-

ity  is eli]llinatecl.  This l]lathematical  fornlulaticm can he romplenwnted  ancl spec i f i ed  by

the followil]g  physical reasonings: The apl)lication  o f  the Reyllolcls-averagil]g  coll(litiol]s

to any nonlinear  dynamical model leads to auother  nonlinear system which differs frol:l

tht’ origil]al  one  by  additional variables - the Reynolds “stress” (see Eqs (226),  ( 235) al]d

(239)).  In a syml>olic form, the transformation from the Newtonian (Y. ) to the ReyIlolcls

(R. ) dynalnics  clin be presented as:

Rox =  .Vo.r+uR

If

is

is

the original dynamical system

.Vox =0

umstablel  hut the Reynolds-averaged system

lV*Z +OR = 0

Stab le ,  ollviolLsly,  the Stabili  ZatiOll  is  performed by the Reyllol(ls  stresses UR: ({riven

l~y the Il]echanism  of instability of the original model, they grow until tile instal)ility  is

suppressed down to a neutral stability. AS will be shown below, the last condition uniquely

defines OR M well  M all the averagec~ parameters of the dynamical system. ~fathematical

justification of the neutral stability of Reynolds-averaged models will be given in the section

4,C (see Eqs. (275) and (276).

Experimental verification of neutral stal~ility  of free turbulent jets was reported by

Lessen, M, (1976),

In the next sections the stabilization principle will I)e applied to prediction of postin-

stal]ility  behavior of fluids  (turbulent motions), and of fillite-(lilnellsiolld  dynamical sys-

tenls (chaos).
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4 . Application of the Stabilization Principle to Predictions of Chaotic

Motions

a. inertial hflotions

In or[lex to cl:uify  tllc Illaill icl(’a of tilt> al~l)r(mcll, lt’t us tllxn  to tll(~ illcrtial  Illoti(]n  of a

particlt’  M  of Ill]it llI:Ms ill a slll(x)tll  ]Jst’ll(losl)llt’lt”  S llavillg  Zi ct)llstallt  llt’gativ(’  cllrlzit[lrt>

(15).  .4s show,, t h in , the” orbital  instal~ility,  and  thtmf(m, tilt’  rhaotic 1~(’llavi{)r of tilt’

]~article  N4 call l~t’ tlin]illattvl  by tllf t’lastic  fort:f” ( 4 0 ) :

F = –(Y2C  ,(Y2 = (’ollst.  > --2WG’,  (; < 0 (243)

lndtwd,  so far t h i s  Illotit)n w:Ls rt’ftmd to an ilwtial  systmn of (-()(mlinatt’s  qI, q2,

w h e w  ql is tile coor(li]]at(>”  al(n]g tllr gt’odt’sir Illt>riclialv+,  and q~ i s  tilt’ c(xmdillatt’  zilollg

tht? parallt’ls. Lt>t lIS illtrt)(l~~ct’  Ilow a frall]t>  of rt>felt’llct’  wllic]l rotatt’s  alxmt tilt’  a x i s  o f

s y m m e t r y  of tilt’  psf’lldoshtw  with the rapi[lly  (m:illating  trimsport  vt’kwity:

i = 2(() ( ’ o s  tit, U--ire (244)

so t h a t  tile colll]x)l}t>l]ts  o f  tilt? rt’s[lItal)t  vt’locity  along tilt’  mmidians  all(l parallt’ls  art’,

respectively:

v] = tjl, q = j~ + 2:0 (’os Lot (245)

Since Eq. (245) has tht? same structur~’ M E q .  ( 2 2 1 ) ,  tht’ Lagrangian  of the moti(m of

the particle M relative to tht~ nt~w (n(m-illt~rtial  ) framt’  of reftmmm can lw written in the

f(dlc)willg  f(mn: (stw Eq. 2’2):
6

L* z ~: – -& _,&uO*l (j; -t ~:) (246)

The l a s t  ttmu in E q .  ( 2 4 6 )  rtq)rtwl~ts  tht> colltril~ution  of tht’ intrtia forct>s in tht nt’w

frame of I’t’ft’rt’ll(’(’.



l)articlt’  Ill is t’lilllill:itt’(1. q’llrllillg to tlie  collflitioll”  (42),  ollt” (JIJtaills:

(247)

s:ttisfit’cl  if

(24s)

As follows  fr(]l~~ Eq. (45), in  tl]is  lil]~it  cast’ tht’  Ly:ilJml(w  rx]~ol]~vlt of tllr r(>lativc  Inoti{)ll

in the nt>w (I]oll-ill(’lti:tl)  franlt> of rcfm>llct’  will Ix> zt’ro:

(248).

i.e.,

13ut tht? original (llll])t’xtllrl)f?~l)  Illotioll”  was [lirtx.ttd  along the mt’ridians,  i .e. ,  ~~ = O .

Const’qut’lltly,

(] =- 0, j] = u“ == C(mst (253)

i.e., t h e  rrlativt’  motion”  along  tht> tr:ijt>ct(my  mll:tins unrh:ingt>d.
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(7 =- ly)f, (256)

As follows” flol]~ E(]s. (254-257)  tile  lnoti(m ill  tllt~ original  friill]t~  of rtft’rmce is stable

ill  tht> stmsc  t h a t  tllr cl~rrtvlt dtwiatiolls  of flis])l:l(.t’l]lt’llts  and vt’locitim  flo not exceed

their  il]itial val~ltw. Howev(Jr,  tilt’ clisl~l:it’t’lllt’l~t  - tin]t’ fllllrtioll  (257) is not {liffmt’l]tial)lt’

lmc[ilwe its {Ierivativ(’ (255)  is I]]ldtivalllerl, lll{lt’t’{1,  for  ally  arl~itrarily  slllall  i n t e rva l  At

tlltvr always exists  Sll(-ll  a lalgt’  fr(xlllt’11{’y  UJ > At/27r  that  witllill this illtt~rv:il  tilt’  t’t>locity

(255) runs tlmmgh all its values. In otllt’r  w(mls, (m’ atrivt’d  a t  s t ab i l i t y  in the class  of

Ilc)ll-fliff(’rt>  llti:il)lt’  flmcti(ms. (Tl,e ~~~titl~tl]~:itit.;tl  mmning  t,f tl~is rtsult  w i l l  I,e discluwcl

MOW.)

Tll~Is,  clmotic motitm of a  paxticlt’  011 a sll~(x)tll  l)st~ll~losl~llt’rt~  i s  rtq]resmtml by tllt~

“mean)’  m)ti(m (256) ahmg  tht’ undistudw(l  gt’()(lt’sic  trajt’rt(my  (with the constant vt-’lorit  y

( 2 4 4 ) )  and the fluctuati(m  moti(m (257)  norllltil  to t h i s  trajt~rtory.  The “amplitudt”  of

thtw’ f luctuat ions is  vallisllillgly  snlall, l)llt tilt’  v(’l(wity “alnl]litu{lt’”  is finite. It is worth

(-llll~lla.sizillg  that t h i s  amplitu(le  is ])rolx~rtiolial”  to tile  gaussial]  vurvature  of tho sllrfa(’t>

S,  i t? . ,  to the dt?grtw  of tlw (ml~ital  instal)ility. mlt~lt~foxt~,  it can Lt’ :tss(wiattd w i t h  tht’

mt’asurt~  of the uncertainty in tht> dtw.ril)ti(m  of tht? motion.

It is worth mt~lltiol]illg  that l~otll “mtvm”  and “fluct~mti(m” c(m]p(mtmts  reprtwtmtil]g

tht’ origitlally  chaotic moti(m  [ire stal~le. That  is  wl]y tht>y are not, sensi t ive to initial

llllcmtailltics  all(l art’ flllly  rt~l)locl\lcil~lt’. 1)1 otlltv  w(wds,  s u c h  a rt~]~rt~st’lltatiol]  of tilt’

originally  cllw)tir motion”  is (lt>tt’lll]illistii..



Of the t’xamin(’(1  lnoti(n],

Salllc [trgulllt’llt  .

allcl  tlltm’f(mt>,  tht>se  valllt~s  can lx’ aswwiatwl  w i t h  ‘t~illnost’”  tilt’

tht’ co]lcrl)t of st:ibility  i s  rclat(vl to a ctvt:iin class  of funrtitnls,

then tl]t’  s(}llltion  (257) is staljlt’  f(m n = O, 1, l~llt  it is llllstal~lt’ for  71 = 2, 3, . . . . sillrt’ its

d(’rivativm  c (2),((3) , . . . . (’t(’. , art> IIlllx JIIIlrlwl,  II] otl]m wOMIS, tl~c collctq)t  of stability  as w(~ll

as  cllw)s is all attril)llt(’  of :i lll:~tllt?ll]ati(.:il  nlo(lt’1 Izitllt’1  tl)al]  of [i l)llysi(.  al 1)11(”110111(111011.”

Onecannotice  that  tllcal]l]li(.ztti(  )l]()ftllt`  st:i}~ilizati()ll  ]Jrillci]]letc)  rt’lJ1esf:xlt:tti(jll  of

c h a o t i c  m(>timw in Lagrangi(m  {Iyn;imics  can l~t: linkml  to a cf)l]trol  l)rol~lt~ll].  Illdeccl,  wt~

art? introducing adrlitiollal  ral]i(lly  fluctlmting  forces  (c(mlin,q froln Ilon-intvtial  motions of

tllc framo of reference) which are rotllJlcd  with tilt’ ]Jaralnt’ttvs  of motions in sllch  a way

that the (wigillal  instability is t~liminattvl.

gk)lxil  Lyapunov  rxp(mrnts  alt~ tllt~ s:ill~t~. That is why l~y t’laminating tlw p(witiv~  local

Lyapumw t~xl)out’llt  wt~ ‘{{illtolllatit.ttllyv’”  rliminatt’  the glol~al  (ret>. In tht’ gtmmal ctisr,  tllr
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(’lill)illati(nl  of local  (Jxl)oll(’l)ts  i,c., with tilt’  OVOI” st:il)iliz(, [l xt~l)x(’s(’lltzttiolls.

b. Potential Motiol]s

I][isc[l ll])ollE[ls.  (235), fol”

ill tilt> follow illg”  forll):

)ot(~lltial motiom.”  th(’ govtm]illg  t’qllati(ms  can  IM’ writ en

x( ’ft’It’ll(’t’  (s(’(’E(ls.  (236)).

F(n simplicity,  w(’w ill (>()]lfillt()lllstl~’{’s l~y a tlt’()-clilllt’llsi()llal  [ly:l[llllic:il

slllning  that  n = 1,2,

Followil]g  tht? smm stratt~gy  a s  th(w al~l)lit’(1 to int’rti:tl  nloti(ms,  let  us

Systt’11)  zts-

(’oll])lt”  tilt’

f(nxxwiu  the from:

where (1(1) is a fictitious potential  t’llf’rgy f’(llliv:ll(’llt  to tllr kint’tic energy  of tht> fluctuations.

Thin,  turning to the criteria  of l(md (nl~ital  stal)ility  (38), (mt~ fin[ls  this potential mergy

n ( a), ;ind  collst’quently,  tile inert ia  forrt’s  (1~1) fr(m tile  conditi(m  that original  local  o rb i t a l6

az(n + n(,))_—— —- ——.. _. r~jUn  ‘ n ( i ) )—-————.——.
aq’a(p ilf 1 ?/*nJ =: o i,j = 1,2.

(263)



pmitivc  exp(mt’llts  is ll](m’  sol]llisti(’:itt’[1,  aIl{l it cm l~t’ i]ll])l(’ll]t’lltc’{1

It is w(wth  noting  that  Eq. (269)  is simliifitd  to the following:”

(rely  ~lumt’rically.

if  tllc l~asic nloti(m is (Sll:mzt(-tt’lizt>(l  l~y ztw)  lJott’lltial  f(~rct’s

Or] _ o
jjj ‘-

I t  Illfly  ()(’cIw, f(m instanw,  when the dynalnira]  systtm  is in a rclativt’ fquilil~rilml w i t h

rmpcct tO a nlOving  frwnc.

Examples  Of  applicaticm  of tht? st:ibilizati(m  ]Jrinciplt’  tO elastic systtms  and to iclml

fluid am given l~y Zak, M. ( 1 9 S 71 and lflSGa,  x~sl)t’(.ti~~tly).

c* General Case

, Whm moti(nls  of a dyn:imical  systt>lll  art’ not lx)te]~tial,  ill mal]y  cases  it is Illore  coll-

vtmicmt tt~ represt’nt  Eqs, (235) ill tl~t~ f(wl]] of a systtvn  of first order differm~tial  t’qua.ti(ms.

For s implici ty,  we mmfine  (mxclvt’s  by  dyn[tl~~ical  systems which cm be prwmtcd in the

following  f(mm:

.i’t = a~.r] + [)1ll,,.r) J1)L, i==l’~?l,-, . . . (9~~ )
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somt> of tl]t’  Lya])lIIN)v  twlx)ll(vlts  of rflllatioll  (266)  zilt’  lx)sitivt’:

A;, > 0, 1)1 == 1,2, . . ..s.

Scrondly,  we arc l(xAing for a (1(’(”ol]]]jositioll  in which tilt’  mean

tl~al~ clmotic. Htvlc(’,  tile  flllctl~atiolls  s1lOIIIC1 ljt’  (.OII1>l(X1 with tllt~

(~yJ)

moti(m is lx’rio(lic,  rtithtv

mmn mt)tioll  sl~rh that all

lx)sitivc  Lya]NIll(w t~xl)ollt>llts  1~~’roll]t” zt’ro, wliilt’  tlit’  lt’st of tl]t’ exl~ol][l(’llts  art’ Illlclla]l,qt’(1.

Il]dtw[l,  in tl]is  cast’ tile lnt>all  l]]otioll”  i s  :i lt~glllal  ll~(jtioll  wliirll  i s  tllt~ ‘“clost’st’”  to tllt~

original  chaotic moti(m. S i n c e  tlw Lyal)I~nov  txp(mtmts  for tllt~ systml]  (267,  26S) cltqml[]

[)1] tile “ftwlhack” codficim~ts  ~t~ ‘)’, a~~~t  t~tc., tllr (“h)surt’ (’al] IIow 1X’ forlnldatcd  as follows:

AT (a; ‘“ , {1;;;’ ,.. .) =, o, i == 1,2,..., s+,

y((tp 7 {1;;:’ , . . .) = A:(o, o ,., .), 2 == 1,2,. ... s0,

~;((l;”l ,afj~+,...)  = A1(O, O,...), i = 1,2,..., S-., (MO)

in wl]icll  A+, A“ and A– art’ lxwitivt’, Z(JI() aII(l  llt~gativt’  Lya]jI~IM)v t’xl)olltvlts,  Itwl)t’ctivt-ly.

Ol~viously,  those roefficimts  a; ‘)’ wlli(’11  [lo Ilot al)lJt>:il  in tquati(m  (270) ,  Il]llst ljt’ ztw).

Thus,  the systtvn  (267,  26S, 270) is rlost’(i. I t  dt~fil]t’s  t he  rtfydax mtwn moti(m ZUIC1

f luctuat ions wl]ich  rt’prt’st’llt tilt’  original  (.ll:iotit.  lllotit)ll. Sinctt all tht~ Lyapumw exp(mt~llts

for this systt’in are not lmsitivt’, tht’ s(dut,ion  i s  stal)le and prcdictal)le  in tlw sense tliat

slllall  cll:ulgcs  ill  tilt’  i n i t i a l  coll(litiolls”  {Salls(’ slll:t 1 1  t’llallgt’s  ill lx)tll  tht’ Illt’all  moti(m [illfl

tht’ flllctllations.
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h the next  sulwctim  thr aljplicatiO1~  of this alj])rtmch  to the L(mmz  strange attrwtm

is ill~lstratt’~1.

b. lIigller  Order Ap]~roximatiolls

quadruple  C(m{>latiolls  .r’ J-J .rk ,r ‘“ rt c

Indtml,  multiplying tquati(ms  (266) l~y .r~ all[l al’tvngillg  :iIl{l r(mll~illing  tilt’  rt’slllts,
—.—

(me ol~taill  tilt?  govtmlillg  t>qllat  i(uls for tilt’  ])iiir  c(nm’l:iti(ms  .ra .rk:

.-.
wllicll  mlltail]  Ilil]c afl(litionzil  tril)lr  c(mr(’latiol]s  .i:l.r~.r~.

Silnil:tr  t’quatiolls  for  tlit’  tril)lt’ c(mt’lati(ms  wil l  r(mtain till  tilt’ qIKidruple  cormlati(nls

etc. In  gtmcml,  (mt~ amivt>s at  tin ildillitt’  hitvarclly  of t>qmtti(nls wllivh  art’ (qwn,  sinrr tiny

first N t~q~latiolls  mlatt> (N + 1 ) (.olx(~l:ttiol]s.”

Ihm t h i s  viewpoint  all the rl(wurts  {Iiscllss(d  alxnw ran l~t’ consi[lt’lt’d  as first-orclt’r

a]~l)]t)xix]~:itiol~s  w h i c h  ddintvl  (rely tll~ lllt’an c(mlpmrnts  of tht’ clm)tir  moti(ms.  In OL-

rlcr  t o  (lefine  Ix)tll  tilt?  Ineall  moti(m w1(l tilt’  (lolll~lt”  m)rrt’latiol]s,  ont”  s1l(JIIIC1 rol]siclm  tllc’

Reynolds  tlquati(ms  (267) togetl]cr  with txlllati(ms  (271), In this cast?  the ewduti(m of tllt~

[I(nll]]t?  c(mwlati(ms is already prt>sr!ilxxl  I)y tvll~[iti(ms  (271), and  (Solls(’{111(’l]tly,  the stalJi-

lizing ftwdlmck  must now  couple  the triple corrt~l;iti(ms  with the mean and pfiir  corrrlati(m

Component s:
_..

JJ.rJ.~~1~ u F(.rk, ji.r’”). (~y~)

The systtm  (267,  u971,  ~7~) will ~l(,fill(> 1)(.lio[li[.  lll(,:il]  :lllC1  ]J~i~ (’()~lt,l:~ti()ll  (’ollll)ol]C’lltS.”  It

is possible that the mtmn c(n]lp(mt>llts  ll]:iy 1 )~’ (liff(’1’(’llt  fl”olll thoSt>  folllld l)(’foXt>  (ill tll(’

sa int :  way in whicJ]  tllc st’i.ollcl-orclt’].”  :il~l~loxilll:itioll”  lllay l~c {Iifftmmt  frolll tilt’ fixst-orclt’r

0116).



c. Computational Strategy

As follows” frolll  the al)ol’(’,  tilt’ (’los(lrt’,  i,(’.  i tll(~ sttil~ilizil]g ft’cclljack  lwtweml  tll~~

I{cyl~(d{ls  stfrcsstw  tin(]  tht~ mt’tin colll]x)llcl]ts  of tl]~,  ]Iloti(m, can  lx’ writtcll ill  t}lc t’x])lirit

forlll  only  i f  tilt’  (Tlitt’lia  for tilt’  [)lls(’t  of (’lI;l(w  art’ foll:]~llatcrl  exl~liritly.  Sinct’ sllt>ll  a

situatim i s  :ill t>xctq~tioll  ratll~’x  tllall  [L rlllt,, Jvt’ (l(’v(’lo])  1)(’low tt (’()]l)l)llt:iti()ll:il  str;it(’gy

wl]i(.11 allows ollt”  to fi]l(l  tll(’  closllrt”  rt’gttr(ll(>ss  of tilt’  (’()]lll)lt’xity  of tllr OIigiIl;  il (,qllatiolls.

W’t, w i l l  (ltvllollstatt”  t h i s  stlttt(’gy  ~lsillg  t’(lllatiolls  (26 G). T]lt’  saIIlr stxatcgy  \vill I)t>

suital)l(’  for  tile  .Ntivi(’x-St  ol;t’s(’  (llltltiolls” , sill(’(’ aftt’x all al)pro])riate  (Iis(’rt’tizatioll  t(’clllli{l[l(’

they Ie(lll(’e to tilt’ foxlll  (2G6).

‘1’Iunillg  to t(lllatioll

I{rynolds  (1(’(.oll]l)ositio]l,

Statr of J’::

(267), wlli{’11 foll(}w flo]ll tqllatiolls  ( 2 6 6 ) ,  tis ti rt~slllt  of tilt

1(’t IW lillt’:irizt>  tll(ull w i t h  It>slwct  to tht’ (miginiil ( “laminar” )



a n d ,  thw’fm, tht’ 10(’[1]  rigmviilllt’s  of f(l~~atiolls ( 271 “ )  :{1’(’ twice a s  larg(’ as tll(m for

(’qllations  (267), i,t’., illsttmd  of ty~l:itio]l  (274):

L e t  IW st>ek  EL (.l(MIIIC  to t’(llwtiolls (2G7) ill t]]t’ Ilt>iglll)orl)()()cl  of tilt’  oli~illa] huninar

st:ltt~  z: ill tht’ fol’111
—. —. —._

/);,,  .r~ J’ ‘“ = C:,, P , (281)

S u b s t i t u t i n g  t~qlmti(m (2S1) into t(lllati(m  (267)  allcl lil](’arizixlg  tllmll  witl} rcsp(:ct  to tllt~

original “laminar” st:ltt~  z~, (HIP ol)tains

While tllr cigt~llvalllt’s  for  this (Squatitm follows” frolll

.
RfAj = ~(RCA1  ‘- I(l?ii,l). (2s4)

In (Jr(lt’r  to find  C; fxx)nl coll(litioll”  (2S4 ), we {liagolmlizt”  tilt’ m a t r i x

Su(’11 that

(-)-’ F(-) = [,Ajl. . . ,A,,].
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1s 10(111(1  to 1){’

{c,, } = ;(-)[C,, C’2,.. .C,,](-r’,

tllxhldm’t’,  01” Chaos. Tilt’ pl’()(’(%s  (’11(1s  Wilt’11 tilt’

]x~rio[lii’)  attIa(’tor  1~’l](w txistt’11(’t>  is assIIll](Y1.

A n[ul~t’rif.al  illll~l~,lll(~llt;itioll  of this stx:itcgy

sollltioxl”  :i])l)ro:icllw  a xt>glllar  (static (II

call  I)t’ ljastvl IIpOIl  a (lilt~ct slll~]~rt>ssioll

Applying tht~ I{eynolds  tr:tl~sfoll~~:itit)ll  to tllt~ L(m~llz attractor:

(y-Jl)

(X-J)



.4s t~xtr~t-v:iri[il~lt~s,  t i l t ’ s t>  clolll~l(”  (’f)lrt’latiolls  IIlllst l~t’ folllld  frolll  tllt~ cf)llrlitiOll  that

tllcy  slll~lm>ss  tht’ l]ositiv(”  l,y:~])ll]lov  t’xl)ollt,llt (lOIVII to z(~ro, Ill this ctist’,  l~oth tht’ mefin

all(l tile  CIolilde-  (Toll.t,lati(uls  rollll)oll(>llts”  of tll(> Illoti(]ll w i l l  lx’ rrljlrst>lltc{l  ljy lmioclic

:ittl:ictors,  it-., in :i ftllly  [l~’t(’llllillisti(>  ~~’ay.

N~m~(~ric:il  ill~l~l{,l~]tl~t[itiol~  of tl~is  str:ittgy  l)trf(m~lt’~1  fm u =  10, r  = 2s, zilld 1) =

S/3 lr:i(ls to tilt’  followillg” rt’slllts. l’i~. 1 0  rtq)xcstvlts  tllc  original  cllaotir  tittract(w :is :i

sol~~tiol~  to Eq,  (291 ). 11~ F i g . 11 ,  t h i s  :ittr:irtol  is rltwollll)(wtd  into two (lt’tmillillistic

(perio(lic)  Illotiol]s:” tilt’  lll{~:ill  Illotioll”  (Fig. 1  l:i) ti]l[l  tile  c1OII1)l(”  {.O1ltJl:itiolls,”  i t ’ . ,  tilt’

I{cyn(d(l’s  strcssrs (Fig. 1  11), (“). 111 olflel”  to fill[l  till tll(’ (Iollljlt”  roxrt>latioxls,”  ont”  slloldcl

(,xl)loit  tilt’ systnll  for  tril~lt’-  collt’l[itiolls”  wlli(’11  t.;ill  lx’ oljtail~r(l  ill [i str:iigllt-  f[)rl;~tir[l  w:iy

froll)  Eq, (291) .  Ill this sytelll  {ill  tllt~ tlil)lt~-(s(~llt>l:  itiol)s,  its t~xt]a-~’:iri:tl)lt’s,  lll~lst  IN folm(l

frmll stabilization  lJrillcil~li’  in zi sillliliir  w a y . IJy colltillllil]g  tl~is  pr(wt’ss,  (ret’ call fil][l  the

l~r(]l>til~ilistii”  str[~ct~~rc  of tl~i’ sol~ltii)l~  to tll(’  LOI(VIZ t’(l{l[itiolls  (21JI ) to a ri>qllired  accIIxzicy.

I t  sllol~l[l  l~r str~wstvl  that  tilt> sol[lti(j:l  to Eqs. (292)  plotttvl  ill  F i g .  ] ] i s  st:il~lt’  (ill

tilt’ llmv cltlss of flulctiolls  which illclllrlcs ‘{lllllltiv:illlt’cl”  flllctllatioxls  ) :  slll:ill challgt’s  ill

initi[il  Coll(litiolls”  wi l l  l(I:icl  to slllall  i$ll:illgcs  ill  tilt’ soluti(nl.

Qll(? sllolll(l  rt’c:ill that altllollgll  t’ql~atiol]s (292) art’ flifrtvw~t  frt)lll tilt’ origin:il  I.ortvlz

rqllatlons  (291 ),  tllt!y clesrrilw tht’ s:illl(’  l~llysic:il  I)llt>llolllt’lloll”  ill Ii sl)t’cia lly Wlt’t’ttd  fiist

Oscill:tting  frwne of rt’ftmmct’.
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Figure 10, x vs. y plot for 1,000,000 points sampled at 1000 points.
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Figurefia.  x vs. Y plot for 1,000,000 points sampled at 1000 points.
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